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ABSTRACT

Context: The ongoing biodiversity crisis presents a complex challenge for ecological science. Despite a consensus on general
biodiversity decline, identifying clear trends remains difficult due to variability in data, methodologies and scales of analysis.
Ideas: To enhance our understanding of ongoing biodiversity changes and address discrepancies in biodiversity trend detection,
we propose integrating macroecological theory with temporal and trait-based perspectives. First, analysing temporal changes in
diversity scaling relationships, such as species accumulation curves or distance decay, can reconcile and synthesise conflicting
observations of biodiversity change, enabling quantification of diversity shifts from local to regional spatial scales. Second, di-
versity patterns across scales are linked to three proximate components: abundance, evenness and spatial aggregation of species.
Investigating temporal changes in these components provides deeper insights into how human activities directly influence biodi-
versity trends. Third, incorporating species traits into the analysis of these macroecological patterns improves our understanding
of human impacts on biodiversity by elucidating the links between species characteristics and their responses to environmental
changes.

Case Study: We illustrate this integration in a case study of forest and farmland birds in France, highlighting how studying di-
versity changes across scales, and decomposing temporal change in different components can help to elucidate the mechanisms
driving diversity change.

Conclusions: We discuss the limitations and challenges of this integrative approach and highlight how it offers a comprehen-
sive framework for understanding the drivers of biodiversity change across scales. This framework facilitates a more nuanced
understanding of how human activities impact biodiversity, ultimately paving the way for more informed actions to mitigate
biodiversity loss across spatial and temporal scales.
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1 | Introduction

Quantifying multiple aspects of the ongoing biodiversity crisis
and delivering a comprehensive evaluation of its magnitude is
a key challenge. Global empirical studies documenting species
diversity changes show a complex picture (Cardinale et al. 2018;
Keck et al. 2025). First, global and regional decreases in species
richness (gamma-diversity) appear to contradict local obser-
vations of “no net loss” or increases in species number (alpha
diversity) (Vellend et al. 2013; Primack et al. 2018; Boénnec
et al. 2023). Second, the reduction of diversity among commu-
nities (beta diversity), aka biotic homogenization, is recognised
as a pervasive feature (Magurran et al. 2015). This phenomenon
might explain the apparent contradiction between alpha and
gamma-diversity trends by attributing local increases in species
richness to expanding “winner” species, while regional or global
decreases result from the extinction of “loser” species. However,
this interpretation is difficult to test due to uncertainty regard-
ing the spatial scale at which homogenization occurs and is in-
creasingly challenged by empirical evidence (Buhk et al. 2017;
Blowes et al. 2024; Keck et al. 2025). Despite improved clarity
and guidance on the use of metrics to assess temporal biodiver-
sity trends at different scales (McGill et al. 2015), fundamental
gaps remain. A key limitation is that the spatial scaling of di-
versity is not fully integrated in a continuous way, often com-
paring artificially defined ‘local’ or ‘regional’ scales without
providing a clear mechanistic connection between metrics and
scales of diversity change. To address the challenge associ-
ated with scaling of biodiversity patterns, existing frameworks
and their extension have provided valuable tools for assessing
diversity changes across scales. In particular, recent develop-
ments have leveraged the study of diversity-scaling relation-
ships for species (Azaele et al. 2015; Chase et al. 2019; McGlinn,
Engel, et al. 2021; McGlinn, Xiao, et al. 2021) or traits (Mazel
et al. 2014) with a focus on spatial differences or focused on
temporal dynamics without considering multiple spatial scales
(Dornelas et al. 2013). However, they often fail to integrate both
temporal and trait-based perspectives, limiting their ability to
uncover causal mechanisms of biodiversity change. Integrating
the spatial and temporal components, but also integrating spe-
cies traits into the analysis of temporal biodiversity trends,
hence represent crucial steps forward. This integration serves a
dual purpose: (1) changes in trait composition and diversity can
inform about shifts in ecosystem functioning and community
composition, and (2) trait-based approaches offer a mechanistic
understanding of taxonomic diversity changes, allowing us to
infer whether observed trends arise from processes such as en-
vironmental filtering, competition, or anthropogenic pressures.
We here argue that explicitly bridging macroecological scaling
laws with temporal dynamics and species traits approaches (via
categorisation into functional groups or by using continuous
traits) is a promising avenue to address these gaps and that it can
be achieved by linking already existing frameworks.

Macroecology has long stated that macroecological patterns re-
sult from invariant laws that depict changes in diversity across
scales (Brown 1995; Gaston and Blackburn 2000; McGill and
Collins 2003; Azaele et al. 2015). For instance, the well-known
species—-area relationship (SAR), species-accumulation curve
(SAC) and distance decay of similarity (DDS) integrate diver-
sity across continuous scales by describing changes in species

richness or beta diversity with area, number of samples, or geo-
graphic distance between samples. These laws define paramet-
ric functions that describe the expected change in diversity with
scale. Macroecological patterns have been partly extended to
address temporal biodiversity changes (Engen et al. 2002; Harte
et al. 2021), in particular to quantify the effects of disturbance
on species diversity (Petraitis et al. 1989; Newman et al. 2020;
Franzman et al. 2021). They thus offer the benefit of explicitly
incorporating ecologically meaningful measures of scales that
are relevant across ecosystems. An additional benefit of exam-
ining biodiversity dynamics through the lens of macroecolog-
ical laws is that their variations are intrinsically linked to the
total number of individuals (abundance), the distribution of
abundance among species (evenness) and conspecific spatial ag-
gregation (McGill and Collins 2003; Azaele et al. 2015; Chase
et al. 2018). These three descriptors, commonly referred to as
proximate components, bring a deeper understanding of diver-
sity changes while integrating changes at the population scale,
for which the average decline in population abundance appears
as another critical aspect of biodiversity loss (Loh et al. 2005;
Leung et al. 2022). Yet, the study of temporal diversity changes
based on such approaches is still marginal. Only a few em-
pirical studies have attempted to integrate macroecological
(spatial) patterns across time (White et al. 2010) or have stud-
ied the temporal dynamics of macroecological patterns (Adler
et al. 2005; Blowes et al. 2022; Terry and Rossberg 2023; van
Klink et al. 2024) in the context of directional changes such as
anthropogenic pressures.

Species abundance and diversity alone do not fully capture the
multifaceted nature of biodiversity. It has long been recognised
that species trait characteristics bring a complementary and es-
sential perspective to biodiversity thanks to their link to ecosys-
tem functions and services (Lavorel and Garnier 2002; Cadotte
et al. 2011). For instance, the loss of functional diversity per unit
of habitat loss (as measured from a functional diversity area rela-
tionship) is likely a more accurate predictor of ecosystem vulner-
ability than the loss of individual species. A decrease of a certain
level of functional diversity—typically associated with specific
combinations of functional traits—can jeopardise ecosystem
functionality. In contrast, the loss of a single species may have
little or no functional effect if other species with similar roles
continue to thrive (Srivastava et al. 2012). Incorporating traits
into macroecological laws is an active field of research (Mazel
et al. 2014), but the temporal aspect of these laws remains largely
unexplored. Linking the temporal perspective of macroecologi-
cal theory with trait-based approaches can illuminate our un-
derstanding of what drives biodiversity changes and at which
scales.

Our goal here is not to propose yet another biodiversity frame-
work. Rather, we aim to synthesise and connect existing
macroecological and trait-based concepts to stimulate new in-
terpretations and applications in biodiversity change research.
We first outline how temporal variation in macroecological pat-
terns integrates diversity change across spatial scales, then we
explain how recent developments in macroecology theory can
help to better understand changes in biodiversity. We then show-
case how integrating species traits and dynamic macroecologi-
cal patterns can link changes to drivers. We finally outline the
current pitfalls limiting the generalisation of such an approach

20f 17

Global Ecology and Biogeography, 2025

B5UB017 SLOLILLOD BAIERID 3|ded! [dde au) Aq pauLBA0D 88 S3[0 1L YO B8N JO S3IMJ 10J A1q 1T 3UIIUO A1 UO (SUONIPUD-PUR-SLUIBY/WI0D A8 1M A1 Ul UO//:SaNY) SUONIPUOD PUe SWLS L 81 39S *[G202/60/T0] U0 Ariqiauliuo As(1Mm ‘sad|y 81dousio 91sieAIuN AQ 98002 GRB/TTTT OT/I0p/w0d A8 M Asiq Ul UO//SaNY WO1J papeo|umod ‘. ‘SZ0E ‘8E2899YT



and how to better leverage dynamic macroecological patterns
to attribute and quantify the potential effects of anthropogenic
drivers on diversity changes across scales in the future (McGlinn
et al. 2019; Gonzalez et al. 2023).

By doing so, a path towards richer and more robust insights into
how human activities affect biological diversity over time and
space will emerge.

2 | Dynamic Macroecological Patterns Integrate
Diversity Changes Across Time and Space

Beyond data deficiency and statistical issues, the lack of ex-
plicit consideration and reporting of the scale at which diver-
sity changes are estimated is a major issue when reporting
and quantifying biodiversity changes (Estes et al. 2018). Even
when a specific scale such as local alpha diversity is the focus,
the actual sampled area is often not clearly reported (Blowes
et al. 2024) and the definition of what is “local” or “regional”
changes significantly with the organism and biodiversity met-
ric of interest. For example, even within a single taxonomic
group such as vascular plants, the definition of local scale
is likely to vary between a herbaceous and a woody species.
Similarly, regional gamma-diversity is generally tightened to
the study's spatial extent, often without proper consideration
of the actual area or the fraction of the regional species pool
covered by observations. Consequently, the lack of clarity re-
garding the examined scales and their ecological relevance
can affect the interpretation and comparability of biodiversity
change across spatial scales. Importantly, it can also affect
measures of beta diversity, often defined as the ratio or dif-
ference between regional (gamma) and local (alpha) diversity
(see Figure 1), again due to inconsistent definitions of local
and regional.

We argue that macroecological patterns that integrate diver-
sity across an explicit spatial scale or sampling effort offer a
valuable, theory-grounded solution to the aforementioned
scaling issues. For example, the well-known SAR describes
the expected increase in the number of species with the area
sampled, generally described as a simple function with two
or three parameters (Connor and McCoy 1979; Dengler 2009).
However, common biodiversity monitoring schemes rarely
cover contiguous areas but instead generally focus on scat-
tered sampling units. In this case, the SAC, describing the
positive relationship expected between the number of species
sampled in a group of sites and the number of sites, appears
more suited (Figure 1A). This macroecological pattern can
describe diversity continuously from a single site (a species
richness, i.e., often akin to local scales) to multiple sites (y
species richness at the maximum number of sampling sites),
which can represent ‘regional’ or even global scales (in the
case where the entire Earth is sampled); the pattern can be
summarised by a limited number of parameters (e.g., inter-
cept and slope) depending on the best model to fit the data. As
the turnover of species, or § diversity, can be defined as y/a,
the SAC can also describe species turnover for any number
of samples, called beta rarefaction (Ricotta et al. 2019). We
will thus further base our argumentation and illustrate our
ideas using SACs, primarily due to their compatibility with

the spatially scattered sampling of most biodiversity monitor-
ing schemes. But note that our central arguments regarding
temporal dynamics apply equally to other diversity-scaling
relationships (e.g., species—area relationships [SARs], rarefac-
tion curves, or distance decay).

Looking at temporal changes in SAC (e.g., with richness of fish
species from 1970 to 1995, see Figure 1B) integrates changes
continuously from local to global scales and effectively sum-
marises diversity changes of numerous forms of diversity
(McGill et al. 2015). In a first example, a temporal increase in
y richness will bend the SAC upwards at broad scales (top left
in Figure 1C), which can be measured as an increase in the
SAC slope over time but no change in the intercept. In a second
example, an increase in site-average a richness bends the SAC
upwards at local scales and will be measured as a decrease in
the SAC slope over time and an increase in the intercept (top
middle in Figure 1C). In both examples, the resulting § diver-
sity also changes at larger or smaller scales, respectively, for
the first and second examples. Looking at change in the SAC
allows a supplementary layer of understanding, as combinations
of observed diversity changes across scales are underpinned by
compositional changes in terms of species occupancy. In the sec-
ond example, observed diversity changes can be interpreted by
the replacement of range-restricted species by widespread spe-
cies (Blowes et al. 2024). In other cases, a similar increase in a
richness and y richness will shift the SAC up without changing
its slope (bottom-left in Figure 1C), while a combination of an
increase in « richness and a decrease in y richness will change
the slope of the SAC (temporal decrease in the slope of the SAC)
without shifting its overall level (no change in intercept; bottom
middle in Figure 1C). Most combinations of SAC changes can
be linked to temporal compositional changes of range-restricted
versus widespread species (Socolar et al. 2016; Chase et al. 2019;
Leroy et al. 2023). However, some combinations are likely to be
impossible because of the link between alpha, gamma and beta
diversity (Ricotta et al. 2019; Chao et al. 2023), and mapping be-
tween compositional changes and changes in SAC parameters
is not fully resolved and requires more research. It is thus pos-
sible to translate temporal changes in different forms of diver-
sity arising from the combination of spatial scales and diversity
metrics (McGill et al. 2015) in terms of changes in the parame-
ters of diversity-scaling relationships along a spatial continuum.
Altogether, such integration through continuous spatial scale
can clarify diversity trend detection by avoiding the ambiguity
inherent in interpreting and comparing trends when they are
reporting diversity change at distinct but loosely defined scales.

3 | Three Low-Level Biodiversity Components
Underpin Dynamics of Macroecological Patterns

Macroecology theory acknowledges that scaling of diver-
sity emerges due to the spatial structuring of species abun-
dance distribution (SAD) within species’ geographic ranges
(McGill and Collins 2003; Storch et al. 2008). Subsequent ap-
plication of this theory (Azaele et al. 2015; Chase et al. 2018;
Keil et al. 2021; McGlinn, Engel, et al. 2021; McGlinn, Xiao,
et al. 2021; Blowes et al. 2022) has uncovered that diversity
accumulation across scales is governed by three lower-level
components (Figure 2): the total number of individuals in
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FIGURE1 | (A) Species accumulation curves (SAC) describe how the number of species sampled increases with the number of samples M. This
macroecological pattern can describe biodiversity from small to large spatial extents depending on the number of samples M, and include any defini-
tion of ‘local’ (alpha diversity) and ‘regional’ (gamma diversity) scales, as long as M_local < M_regional. For sake of readability, we depict the extreme
case where local is a single sample and regional the maximum number of samples. As 8 diversity can be defined as y/«, the SAC can also describe
species turnover for any M, called beta rarefaction. (B) When biodiversity is monitored in time, one can compute SAC for different times (from purple,
1970 to yellow =2000), the change in the parameters of the SAC describes change in diversity from local to regional scale in a continuous way (for
every M values). Here SAC are computed from fish monitoring (Biotime dataset #288). (C) Different possible forms of diversity changes can affect the
shape of the SAC. The x-axis was log10 transformed in order to ease visualisation at smallest scales.

communities (density), the distribution of abundance among trends (Blowes et al. 2022). We thus call for a more general
species (evenness) and the aggregation of individuals in space. application of this approach on dynamic data. Detecting and
As such, these building blocks of biodiversity patterns are de- quantifying the role played by proximate components on
fined as “proximate” components governing parameters of  the temporal dynamics of macroecological patterns would
macroecological patterns because they differ from ultimate provide a supplementary layer of understanding of diversity
drivers such as climate or direct human species extirpations/ changes across scales and metrics. We claim that it also has
introductions (McGlinn et al. 2019). While the examination of  direct implications in terms of conservation actions, as it rep-
proximate components to uncover spatial biodiversity patterns resents a relevant opportunity to gain insights into how an-
is already operational (McGlinn et al. 2019), it has mostly been thropogenic drivers impact diversity dynamics across scales
used to compare the effect of specific drivers between spatial (Blowes et al. 2020). Instead of focusing on the direct effect of
contexts or to separate treatment effects (Azaele et al. 2015). humans on diversity, conservationists should rather focus on
While promising, only a few studies using it actually integrate the direct effect of humans on species abundance, evenness
the temporal dimension to better understand species diversity =~ and aggregation, and how in turn these affect biodiversity
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FIGURE 2 | Variation in macroecological patterns is underpinned by change in proximate components of diversity across scales. Macroecology
theory indicates that the abundance (total number of individuals), evenness (species-abundance distribution, SAD) and spatial aggregation jointly
determine the shape of the species accumulation curve (SAC). In this simulation run using the mobsim R package, a reference SAC (e.g., at t0) is
compared to SAC (e.g., at t1) after a decrease in the total abundances (purple), a decrease in spatial aggregation of individuals (yellow), or a decrease
in evenness (green), while keeping a constant species pool of 100 species and randomly sampling 200 virtual plots (area=0.005). Each indepen-
dent change in a proximate component has a different influence on the SAC, either on the intercept (see inner zoom) or on the slope coefficient.
Simulations were performed using the sim_thomas_community() function from the mobsim R package. In black, the reference simulation was run
with s_pool =100 n_sim=1000, sad_type=“Inorm”, sad_coef=1 and sigma=0.1. In purple, the “lower abundance” simulation with n_sim/3, in
green, the “lower evenness” simulation with a steeper SAD sad_coef *5, and in green, the “higher aggregation” simulation with a higher spatial
clustering of individuals with sigma/2. The species accumulation (also called the sample-based rarefaction curve) for each simulation was computed

using the function specaccum() from the vegan R package. In the x-axis, the number of samples refers to the number of plots sampled.

change. Indeed, it is likely that human activities directly in-
fluence proximate components, rather than diversity per se
(van Klink et al. 2024).

Direct human exploitation—such as hunting, fishing, or har-
vesting—represents a clear driver of temporal changes in total
species abundance. For instance, intensive fishing practices
have led to pronounced declines in fish abundance globally
(Myers and Worm 2003). Temporal changes in species abun-
dance also reflect changes in demographic processes, such as
survival, reproduction and migration (Keil et al. 2025), which
can be linked to altered resource availability and habitat quality.
For instance, a decline in overall abundance within bird com-
munities has frequently been associated with reduced habitat
quality due to agricultural intensification (Donald et al. 2001,
2006). Conversely, an increase in abundance might reflect

habitat restoration or expansion, such as reforestation, which
increases resource availability and breeding opportunities for
forest-dwelling species (Thomas et al. 2012). Changes in con-
specific spatial aggregation might often result from altered
habitat structure, connectivity, or landscape fragmentation.
Increasing aggregation typically occurs when suitable habi-
tats become fragmented, forcing species into smaller, isolated
patches (Fahrig 2003). Conversely, decreased aggregation might
reflect improved habitat connectivity or the spread of invasive
or generalist species (Simberloff et al. 2013). Changes in even-
ness (SAD) provide insights into shifts in community compo-
sition and dominance patterns. Reduced evenness, resulting
from dominance by fewer species, might indicate habitat deg-
radation or anthropogenic disturbances favouring common spe-
cies at the expense of rare or specialist species, thus reducing
the overall ecological complexity and resilience of communities
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(Hillebrand et al. 2008). Increased evenness might occur when
disturbance regimes or conservation management actions re-
duce competitive dominance, allowing coexistence of more
species and potentially indicating more stable or recovering eco-
systems (Blowes et al. 2020).

Currently though, some limitations still prevent a more general
elucidation of the effects of proximate components on diversity
changes. First, the intricate interdependence between prox-
imate components is not elucidated (Storch et al. 2018; Avolio
et al. 2019; Blowes et al. 2022). Whether and how much abun-
dance, evenness and spatial aggregation influence each other,
and how they might themselves be influenced by diversity
patterns, still need to be clarified. Such likely existence of dy-
namic feedbacks is still to be explored with the proper methods
and data, for example, using empirical dynamic modelling (Ye
et al. 2015; Chang et al. 2017) applied to dynamic data. Second,
the appropriate metrics and the scale at which these proximate
components should be quantified remain open questions, in par-
ticular for SAD (Avolio et al. 2019) and spatial aggregation (Keil
et al. 2021). In any case, this change of perspective calls for a
more systematic monitoring of species abundance (or density)
and traits (see next section) and more standardised monitoring
protocols allowing the estimation of simultaneous changes in
abundance and spatial aggregation.

4 | Integrating Trait-Based Perspectives Into
Temporal Dynamics of Macroecological Patterns
Helps Move Toward Attribution of Diversity
Changes to Human Drivers

Following a clear detection of trends in diversity across scales, a
subsequent step, called “attribution”, lies in evaluating the con-
tributions of potential drivers (Gonzalez et al. 2023). Taxonomic
approaches have inherent limitations for (human) drivers attri-
bution because species identity itself is not related to its suscep-
tibility to a given driver. In some cases, local constant species
richness may hide strong species turnover driven by human-
induced environmental changes, which can involve stark al-
teration in trait composition (Barnagaud et al. 2017). In other
cases, changes in species composition might not involve changes
in trait composition (McLean et al. 2019). We argue that advanc-
ing species-based approaches (such as the one described above)
thanks to trait-based approaches can allow for a more sensitive
attribution of diversity changes to human drivers and a more
nuanced understanding of community responses to threats and
disturbances (Mouillot et al. 2013; Parmesan et al. 2013).

The first reason is that species traits, encompassing characteris-
tics of life history, morphology, habitat or climatic preferences,
can be robust indicators of species’ susceptibility to anthro-
pogenic impacts (Cardillo et al. 2005; Chichorro et al. 2019;
Carmona et al. 2021). Because traits are linked to species re-
sponses to global changes, community recomposition can also
be measured by change in trait composition, making it possible
to dissect and understand the nuanced recomposition of com-
munities under various threats (Devictor et al. 2012; Kampichler
et al. 2012; Cheung et al. 2013; Mouillot et al. 2013; Gaiizére,
Iversen, et al. 2020) that may remain unnoticed by taxa-based
metrics alone (Villéger et al. 2010). Considering species traits in

conjunction with dynamic macroecological patterns thus has a
high potential to enlighten the mechanisms behind ecological re-
sponses across diverse taxa (Smith et al. 2013; Mazel et al. 2014;
Ricotta et al. 2019). Trait distributions and/or functional diver-
sity provide a complementary perspective to taxonomic richness
by highlighting shifts in community composition that may be
masked in taxonomic assessments alone. For instance, changes
in functional diversity can indicate shifts in species interactions
or environmental filtering (Miinkemdiiller et al. 2020), even
when decoupled from taxonomic richness changes (McLean
et al. 2019). Conversely, observed taxonomic diversity changes
may be better explained by analysing how functional diversity
is restructured over time in response to environmental pres-
sures. This approach has been successfully used, for example,
to determine whether human activities increase the abundance
of species with specific characteristics at the expense of oth-
ers: common/widespread/generalist/small-bodied versus rare/
restricted/specialist/large-bodied species (Purvis et al. 2000;
Cardillo et al. 2005; Cooke et al. 2019), or affect the spatial
aggregation of individuals and species via physical barriers or
landscape configuration (Tucker et al. 2018, 2021).

The second reason is that patterns of trait diversity can re-
veal key insights into community assembly processes (Weiher
et al. 2011): low functional diversity (relative to random expec-
tation) can result from environmental filtering or biotic hierar-
chical competition, while high functional diversity can indicate
interspecific competition (Smith et al. 2013; Miinkemdiiller
et al. 2020). Interestingly, the influence of community assembly
processes is thought to vary as a function of spatial scale and
should thus be expected to leave a variable imprint on functional
diversity depending on scale (Gatizére et al. 2023). Over the last
decade, several studies have recast macroecological laws from a
functional trait perspective (e.g., Lamanna et al. 2014; Hulshof
and Umana 2023; Matthews et al. 2023). Functional diversity
area relationships (FDAR) extend the concept of SAR by link-
ing functional trait diversity to habitat size, helping disentan-
gle the effects of biotic competition and environmental filtering
(Mazel et al. 2014). Functional rarefaction extends the context
of SAC to traits (Ricotta et al. 2012). Similarly, distance decay
of functional similarity (FDDS) enables a spatial assessment
of trait-based ecological similarity, providing a more nuanced
understanding of biodiversity responses to environmental gra-
dients (Graco-Roza et al. 2022). FDAR, for example, identifies
the scale-dependence of environmental versus biotic filtering
(Smith et al. 2013), while FDDS deciphers the relative effect of
pure dispersal from environmental and biotic filtering depend-
ing on the spatial scale (Graco-Roza et al. 2022).

As such, linking trait-based approaches and dynamic macroeco-
logical patterns offers promising means to better identify the in-
fluence of global change drivers on diversity dynamics (Chapin
et al. 2000; Violle et al. 2014). Note that we do not aim to intro-
duce a new framework to assess trait-based diversity changes
but propose two methods to integrate existing trait-based per-
spectives into the temporal dynamics of diversity-scaling re-
lationships. By linking species traits—such as life history,
morphology and habitat preferences—to macroecological dy-
namics, we highlight how trait-based macroecological patterns
provide a more sensitive lens for detecting human impacts on
biodiversity.
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Integrating a trait-based perspective with proximate diversity components can be achieved by moving from species-abundance distribution (B, top-

left) to species trait distribution describing the variations in the number of species holding a particular trait value (B, top-right) or via trait-abundance

distribution describing the abundance of species holding particular trait values (B, bottom-left). Here exemplified using species biomass. Dots are

individuals from different species (one colour per species).

However, the theoretical foundations of these laws are still de-
veloping. One obvious reason is that the shape of trait-based
macroecological patterns depends on the traits under consid-
eration, even though recent studies indicate a low-dimensional
evaluation of functional spaces may capture the primary di-
mensions of organismal functioning across taxonomic groups
(Mouillot et al. 2021).

A first, straightforward and easy way to integrate the trait-
based perspective into the dynamic macroecological patterns
is to compare dynamics between groups of species with con-
trasting traits or requirements across groups. For example,
one might anticipate distinct responses between endotherms
and ectotherms, small versus large organisms, cold versus
hot dwellers, sessile versus motile species and those with
varying mating systems, genome sizes and longevity (Staab
et al. 2023). This approach has proven useful to attribute fish-
eries impact on diversity differences between protected and
unprotected areas (Blowes et al. 2020). A second approach is
to use quantitative trait values to build trait-based macroeco-
logical patterns. This could entail switching from traditional
macroecological measures (SAR, DDS, SAD) to the afore-
mentioned emerging trait-based equivalents (FRAR, FDDS,
TAD) (Figure 4). Both approaches only require knowledge
about species’ mean trait values, which is more and more
accessible from databases for many taxonomic groups, thus
facilitating the construction of “trait-based” dynamic macro-
ecological patterns (Smith et al. 2013; Mazel et al. 2014; Ricotta
et al. 2019; Matthews et al. 2023) and offering a more compre-
hensive understanding of biodiversity dynamics in the face of
global change (Graco-Roza et al. 2022; Koffel et al. 2022). Note

that recent studies have also shown the fundamental relation-
ships linking traits-abundance distribution and richness-
productivity relationships (Pigot et al. 2025), opening exciting
perspectives for trait-based macroecology.

By building on established methods and extending them to trait-
based macroecological patterns, we here delineate a roadmap to
better quantify and interpret human-induced changes in biodi-
versity at multiple scales (Figure 3).

5 | Attributing Detected Diversity Changes
to Anthropogenic Drivers Using (Trait-Based)
Dynamic Macroecological Patterns

While changes in diversity can be detected and quantified with
large spatio-temporal inference, causally attributing them to
ultimate (human) drivers is rarely accomplished. Yet, many
temporal diversity changes are thought to be driven by an-
thropogenic impacts on the environment. Land and sea use
change, climate change, pollution, invasive species and direct
exploitation are all thought to have predominantly negative ef-
fects on diversity (Diaz et al. 2020), while land protection and
biodiversity restoration actions are thought to have a positive
effect (Kail et al. 2015; Meli et al. 2017). Three main factors
make the attribution of diversity changes to human drivers
challenging. First, human drivers impact diversity patterns
differently depending on the spatial scale. Here, we have seen
that a dynamic macroecological pattern approach, which con-
siders continuous scale-dependence, can clarify which human
drivers influence diversity along an explicit scale continuum
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(Powell et al. 2013). Second, diversity measures focused on
species identity alone are inherently limited in linking specific
drivers to spatio-temporal patterns in diversity. As outlined
in the previous section, trait-based dynamic macroecological
patterns can provide a complementary, functional perspective.
Third, human drivers' effects on diversity are complex and in-
tercorrelated (Bowler et al. 2020) and interact with each other
(Gaiizére, Barbaro, et al. 2020). Such intrications can lead to
confounding effects and biases when trying to measure their
influence on biodiversity patterns, particularly if the influenc-
ing variables are not available or incorrectly related. A way to
address this third issue is to rely on structural causal model-
ling (Arif and MacNeil 2023). A graph model represents quali-
tative causal relationships as a directed graph where variables
of interest are nodes related by edges that represent potential
directional influence. Such graphs can be used to clearly set
and visualise assumptions about the cause-and-effect relation-
ships between anthropogenic drivers and diversity changes
and to identify the role of variables (i.e., confounder, media-
tor) when targeting a causal effect. Graphs can be built from
expert knowledge alone, or with the help of causal discovery
algorithms that look for causal signatures in the data (Glymour
et al. 2019). This allows assessing the need for statistical adjust-
ments (i.e., in case of confounders), which is especially relevant
when causal relationships are determined from observational
data (for more explanations, see Arif and MacNeil 2023). Such
a priori identification of the role of potential driver variables
offers a more comprehensive and relevant expectation of
human impacts on biodiversity (Laubach et al. 2021; Gonzalez
et al. 2023; Runge 2023; Runge et al. 2023).

We propose to leverage the “dynamic (trait-based) macroeco-
logical pattern” perspective described above by integrating it
with the structural causal modelling framework for causal at-
tribution. Studying the proximate components of biodiversity
change (abundance, evenness, spatial aggregation, Figure 2)
in the context of structural causal modelling allows identifica-
tion of direct causal pathways from (ultimate) human drivers
via change in proximate components to change in macroeco-
logical patterns, thus enabling better understanding of the un-
derlying drivers (and potentially mechanisms) through which
human drivers impact species diversity over time and across
spatial scales. We can extend causal graphs by explicitly in-
cluding proximate components to hypothesise specific paths
of action for different contexts (Figure 4). For example, in the
case of wild capture fisheries, a causal graph might indicate
how this human activity drives changes in aquatic animal
diversity, mainly indirectly, through selective effects on the
total number of individuals and SADs. In practice, switching
from qualitative causal graphs to (quantitative) causal models
fitted to empirical time series can be achieved using a struc-
tural equation modelling (SEM) approach. These models can
estimate the effects of the proximate components as well as
the direct and indirect effects of potential (human) drivers
on SAR and DDS parameters (DeMalach et al. 2019), while
handling the dynamic nature of time-series data using, for
example, latent growth curve (LGC) models or ARMA-based
SEMs (Fan et al. 2016). Compared to already existing frame-
works (e.g., mobr, see Box 1), causal graphs and SEM enable

BOX1 | Methods for dynamic macroecological patterns.

Simulations of macroecological patterns

» mobsimr (May et al. 2018) is an R package designed for
simulating the abundances and spatial distribution of
different species. This package is particularly useful for
deriving biodiversity patterns and simulating sampling
of biodiversity. It enables researchers to study how abun-
dance, evenness and aggregation drive the shape of SAC,
making it a valuable tool to understand the intrinsic
links between proximate components and macroecolog-
ical patterns. Although not primarily designed to study
the temporal dynamics of macroecological pattern, cur-
rent developments are going toward the extension of the
capabilities of mobsimr (https://github.com/sRealmWG).

Empirical analyses of macroecological patterns

 Rarefy R package (Thouverai et al. 2020) summarises
directional and non-directional species accumulation
(Chiarucci et al. 2009) and multi-site beta diversity
(Ricotta et al. 2019) as a function of sampling effort (i.e.,
via SACs), hence measuring spatial autocorrelation in
species composition among plots along an a priori de-
fined spatial, temporal or environmental gradient.

mobr R package (McGlinn, Engel, et al. 2021; McGlinn,
Xijao, et al. 2021) performs analyses of biodiversity
data at various spatial scales and quantifies the roles
of proximate components (evenness, density and ag-
gregation) in shaping macroecological patterns, based
on the Measurement of Biodiversity framework (Chase
et al. 2018; McGlinn et al. 2019; McGlinn, Engel,
et al. 2021; McGlinn, Xiao, et al. 2021).

Keil et al. (2021) test and compare approaches to quan-
tify interspecific spatial associations on empirical and
simulated data and provide recommendations for how
to use and interpret them in biodiversity science. The R
package spasm allows computing and comparing differ-
ent measures of spatial aggregation (https://github.com/
petrkeil/spasm/tree/1.4).

Keil and Chase (2022) proposes a machine learning ap-
proach to estimate biodiversity changes over time by al-
lowing for the interpolation of biodiversity data across
spatial scales while accounting for variations in data
availability and completeness.

Causal graph building and modelling

» DAGitty is a browser-based environment for creating,
editing and analysing causal diagrams (also known as
directed acyclic graphs or causal Bayesian networks).
The focus is on the use of causal diagrams for minimis-
ing bias in empirical studies in epidemiology and other
disciplines: https://dagitty.net/.

piecewiseSEM R package (Lefcheck 2016) is an imple-
mentation of confirmatory path analysis for R. The
package allows for performing structural equation mod-
els (SEM) on many types of statistical models, such as
generalised linear, phylogenetic least-square, and mixed
effects models, and as such can handle random effects
and temporal autocorrelation: https://jslefche.github.io/
sem_book/.
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the integration of several drivers and thus to consider their
interaction, which is essential for (many) real-world scenar-
ios. This enhanced understanding of causal pathways from
human activities to diversity changes across scales could then
be used to propose concrete control policies aimed at impact-
ing particular components (Blonder et al. 2023) in order to
achieve effective prevention and mitigation of diversity loss.

6 | Case Study

To illustrate the ideas of the previous sections, we analysed di-
versity changes across scales for farmland and forest birds in
France between 2002 and 2013. The temporal trends of birds,
particularly the decline of farmland birds in Europe, have been
well studied (Rigal et al. 2023; Reif et al. 2024), but primarily
through the lens of species abundance and at a local scale. Thus,
our goal is to demonstrate how integrating a temporal per-
spective with diversity-scaling relationships between different
functional groups can provide novel insights into a well-studied
system. This case study is thus meant as a simplified toy exam-
ple. Indeed, many aspects of the interpretations below would
benefit from more comprehensive analyses informed by a mech-
anistic understanding of avian biodiversity change in France.

In this case study, we specifically address three main questions,
following the four sections of the paper (Figure 5). To assess di-
versity changes over time and space, we analysed avian species
richness accumulation across sampling efforts (1-400 sites) per
year and estimated temporal richness changes at each scale. We
then assessed how low-level biodiversity components (density,

A.What is the spatial
scaling of diversity
dynamics among
forest vs. farmland
birds?

number of species
>

Forest Birds

evenness and aggregation) underpin the dynamics of macro-
ecological patterns. To integrate trait-based perspectives, we
conducted separate analyses for two functional groups based on
habitat preference. Finally, we constructed a causal graph and
used temporal anomalies to evaluate the effects of land cover
and climate change on the components driving avian richness
changes.

6.1 | Methods

We used data from the French Breeding Bird Survey (FBBS),
a long-term monitoring programme designed to assess the
population dynamics of common passerine birds in France.
Skilled volunteers conduct standardised bird counts at the
same 4km? sites annually, which are randomly selected
within a 10km radius of their home locality. For this study,
we focused on data from 2002 to 2013 to analyse decadal
changes that are less prone to nonlinear trends while avoiding
biases associated with the initial monitoring year (2001). Bird
species were categorised as farmland or forest species using
the PECBMS classification. We incorporated environmental
data, including temperature during the bird breeding season
(sourced from CHELSA; Karger et al. 2017) and habitat com-
position and diversity (using CORINE Land Cover; European
Environment Agency 2010). We calculated SAC and prox-
imate components of species trends using the mobr R pack-
age (McGlinn et al. 2019). We quantified the contributions of
changes in the total number of individuals (N), the relative
abundance distribution (SAD) and conspecific aggregation
(agg) to species richness changes, respectively, by comparing
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FIGURES5 | Conceptual description of the potential causal pathways from human drivers (bottom) to proximate biodiversity components (middle)

to temporal changes in diversity scaling (top) of farmland and forest birds. Empirical effects of each arrow are shown in Figure 7, with corresponding

letters (A: Diversity changes, B: Diversity components, C: Driver effects).
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three distinct types of SACs (for more details, see Appendix
S1 or McGlinn, Engel, et al. 2021; McGlinn, Xiao, et al. 2021).
We then estimated the effects of habitat cover, habitat diver-
sity and temperature on the resulting N, SAD and agg effects
for each sampling effort. We first drew a causal graph link-
ing each predictor to each component based on our expertise
and literature (Figure 5). We analysed this graph to detect
potential confounders, mediators and collider variables and
adjusted the model structure accordingly (see Appendix S1).
For each year of monitoring, we computed the accumulated
sum of each predictor variable along sampling effort, ensuring
that the scale-dependent relationships between predictors and
response variables could be captured effectively. To assess the
effect of predictors on each component, we fitted three linear
models (N, SAD, agg) at each sampling effort to estimate the
relationship between each component effect value and tempo-
ral anomalies (n = 12 years) of driver values (i.e., scaled to zero
mean and unit variance), as follows:

N ~ cover_Forest + Temperature
SAD ~ cover_Forest + Habitat _diversity + Temperature

agg ~ Habitat _diversity + Temperature
6.2 | Results
A first exploration of SACs across time (Figure 6) reveals
small but divergent temporal changes in species accumula-

tion. For farmland birds, SACs got consistently lower through
time (yellow lines below purple lines regardless of spatial
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scale), revealing a spatially stationary decrease in species
richness through time. For forest birds, accumulation curves
were higher through time at lower scales (i.e., between 1 and
20 plot sampled, yellow lines are above purple lines), but not
at larger scales where curves cross each other, revealing an
increase in richness at lower scales but no temporal trends at
larger scales.

6.3 | Spatial Scaling of Diversity Dynamics

Computing the linear trend of species richness along a con-
tinuum of scales for farmland (Figure 7A left) or forests
(Figure 7A right) showed marked differences in diversity
change across sampling effort. For farmland birds, our analy-
sis revealed spatially stationary decreases in species richness
ranging from —0.15 spyear—! (between 1 and 150 plot sam-
pled) to —0.2 spyear! (at 400 plots sampled), i.e., indicating a
relatively uniform loss of species across scales. In contrast, for
forest birds our analysis revealed scale-dependence of diver-
sity changes, with substantial and significant increases in spe-
cies richness of 0.15 spyear™ for a smaller number of samples
(<50 plots sampled), no significant trends between 100 and
150 plots sampled, and a weak positive trend (0.075 spyear™)
for larger sampling effort (> 200 plots sampled). Hence, small-
scale increases in forest bird assemblages do not translate into
increases at larger scales and instead lead to spatial homo-
genisation (decrease in beta diversity at intermediate scales)
(see Figure 1C). Note that when performed on all bird species
from our dataset (i.e., without separating “functional groups”
based on habitat), the same analyses showed an absence of any
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FIGURE 6 | Spatially based species-accumulation curves for farmland birds (left panel) and forest birds (right panel) across multiple sampling

years (2002-2013). The x-axis indicates the cumulative number of plots (or plot equivalents) sampled on a logarithmic scale, while the y-axis shows

the corresponding species richness. Each coloured line represents a different sampling year (ranging from 2002 in purple to 2012 in yellow).
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FIGURE 7 | Diversity temporal changes (A), their underlying components (B) and estimated effects of drivers (C) along increasing scales (sam-
pling effort, x-axis) for farmland (left) and forest birds (right). In A, point size shows the slope of the temporal trend (estimated by the Im R function),
and the grey envelope shows the lower and higher confidence intervals, with non-significant slopes (at «=0.05) being shown as transparent points.

In B, point size shows the size of the effect for each component (red = aggregation “agg”, green =density “N”, blue =evenness “SAD”, and envelopes

show expectation from null models, with non-significant effects being shown as transparent points). In C, point size shows the effect of each predic-

tor on each component (estimated by the Im R function) and envelopes the lower and higher confidence intervals of each effect, with non-significant

effects (at «=0.05) being shown as transparent points.

significant temporal change in diversity at any scales (results
not shown).

6.4 | Lower-Level Biodiversity Components

The contribution of the three components (density N, spatial
aggregation agg and evenness SAD) to diversity changes varied
with scale and functional groups. For farmland birds (Figure 7B
left), species richness decrease was driven by density (fewer in-
dividuals, in green) across all scales, combined with evenness
(relatively fewer rare species, in blue) around 50-150 plots sam-
pled, and higher spatial aggregation (in red) for large sampling
effort. For forest birds (Figure 7B right), increasing species rich-
ness at small scales was driven by density (more individuals, in
green) and evenness (more similar species abundances). These
effects fade away with increasing sampling effort, with only the
positive effect of density driving the weak increase in species
richness detected at a large scale.

6.5 | Human Driver Attribution

Scale-dependent attribution of human drivers to changes in
components revealed scale-dependent effects of land cover
and climate change on diversity dynamics. For farmland birds
(Figure 7C left), our analyses revealed a positive dynamic rela-
tionship between agricultural cover and density across all scales;
i.e., a temporal decrease in agricultural cover over the study pe-
riod led to a decrease in density (less farmland — fewer individ-
uals). For forest birds (Figure 7C right), our analyses revealed a
positive dynamic relationship between increasing forest cover
and increasing density (more forest — more individuals) and
evenness (more forest — more similar species abundances) at
a local scale. In contrast, the dynamics of habitat diversity and
spring temperature appeared to contribute little to biodiversity
changes, regardless of the components.

6.6 | Discussion

Bridging macroecology and temporal dynamics in a well-studied
system and dataset, we showed that novel insights can be gained
in comparison to an approach focused on local-scale diversity
dynamics only. First, behind an apparent no net change when
all species were pooled, studying and comparing diversity be-
tween species “functional groups” defined by their habitat re-
vealed temporal changes in diversity. Second, integrating these
changes along a continuum of scales exhibited distinct scaling
patterns for farmland versus forest birds, leading to different
conclusions about the ongoing homogenisation of biodiversity.

Our results highlight that diversity changes within a single
(functional) group are influenced by different components de-
pending on the spatial scale, suggesting that distinct processes
drive diversity dynamics at each scale. This decomposition of
diversity dynamics provides a more nuanced analysis and in-
terpretation of the underlying processes and drivers of diversity
change. We identified that a substantial part of the observed
increase in forest species richness at the local scale—attribut-
able to increased density and evenness—can be attributed to the
expansion of forest cover in France. In contrast, the decline in
farmland bird species richness was only partially explained by
loss of agricultural land cover via its effect on density, suggest-
ing that other drivers are at play too. For instance, some aspects
of habitat alteration or fragmentation not taken into account in
our analyses may have disproportionately impacted specialist
farmland bird species, leading to reduced evenness. These struc-
tural changes in agricultural landscapes likely also contribute
to decreased spatial aggregation at broader scales. Collectively,
our findings underscore the value of integrating diversity com-
ponents and scaling perspectives for disentangling the complex
drivers of cross-scale biodiversity changes and identifying tar-
geted conservation strategies.

7 | Concluding Remarks

To date, research on diversity change detection has mainly fo-
cused on separate discrete spatial scales without embracing its
scale-dependence fully and without accounting for the linkage
between different metrics, which often produces conflicting “di-
versity trends” that cannot easily be reconciled. In response to
the need for a coherent framework that embraces complexities
in biodiversity trends observed at different scales (Cardinale
et al. 2018; Primack et al. 2018; Boénnec et al. 2024), we sup-
port the study of dynamic macroecological patterns as a way to
integrate diversity changes in a continuous and scalable man-
ner (Connor and McCoy 1979; Nekola and White 1999). It is im-
portant to note that although here we focused on SAC because
it is one of the most studied patterns due, among others, to its
suitability to handle data from most existing standardised bio-
diversity monitoring, the potential of using dynamic macroeco-
logical patterns to understand diversity changes across scales is
not limited to this specific example. We acknowledge that the
feasibility of analysing temporal dynamics in diversity-scaling
relationships ultimately depends on the quality and availability
of empirical data, the consistency in survey methodologies and
sampling effort, among others (Magurran and Dornelas 2010;
Dornelas et al. 2013; Gotelli and Colwell 2001). However, the
use of rarefaction curves specifically helps address variability in
sampling effort across time and space, thereby reducing potential
biases and improving comparability in biodiversity assessments
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(Chao et al. 2014; McGill et al. 2015). While data quality remains
a central limitation for temporal biodiversity analyses, employ-
ing these methodological safeguards can allow robust interpre-
tations even in the presence of inherent variability.

Macroecological patterns provide bridges from observed di-
versity to ecological processes (Grilli 2020), while effectively
synthesising varying forms of diversity change and providing
a clear (albeit more complex) picture of biodiversity dynamics.
Beyond improving the detection of diversity trends, we outlined
the importance of studying proximate components of biodiver-
sity changes that are pivotal for understanding diversity dynam-
ics (McGill and Collins 2003; Storch et al. 2008).

We argue that such understanding is essential for accurately in-
terpreting biodiversity trends and their underlying causes. One
of the strengths of this approach is that most of the required
tools are already available (Box—metrics and methods for dy-
namic macroecological patterns) and only need to be “tweaked”
to accommodate temporal data. Furthermore, we discuss how
integrating trait-based perspective and a causal graphical mod-
els approach into this framework represents two important steps
towards attributing biodiversity changes to specific anthro-
pogenic drivers. This integration will enable a more nuanced
understanding of how human activities impact biodiversity at
various scales (Bowler et al. 2020; Gonzalez et al. 2023). In sum-
mary, dynamic and trait-based macroecological patterns not
only enhance our ability to quantify diversity changes across
scales but also provide a powerful tool for identifying, prevent-
ing and mitigating the impacts of human activities on ecological
systems. It advocates for policies that are informed by a deeper
understanding of the intricate mechanisms driving biodiversity
changes.
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