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ABSTRACT
Context: The ongoing biodiversity crisis presents a complex challenge for ecological science. Despite a consensus on general 
biodiversity decline, identifying clear trends remains difficult due to variability in data, methodologies and scales of analysis.
Ideas: To enhance our understanding of ongoing biodiversity changes and address discrepancies in biodiversity trend detection, 
we propose integrating macroecological theory with temporal and trait-based perspectives. First, analysing temporal changes in 
diversity scaling relationships, such as species accumulation curves or distance decay, can reconcile and synthesise conflicting 
observations of biodiversity change, enabling quantification of diversity shifts from local to regional spatial scales. Second, di-
versity patterns across scales are linked to three proximate components: abundance, evenness and spatial aggregation of species. 
Investigating temporal changes in these components provides deeper insights into how human activities directly influence biodi-
versity trends. Third, incorporating species traits into the analysis of these macroecological patterns improves our understanding 
of human impacts on biodiversity by elucidating the links between species characteristics and their responses to environmental 
changes.
Case Study: We illustrate this integration in a case study of forest and farmland birds in France, highlighting how studying di-
versity changes across scales, and decomposing temporal change in different components can help to elucidate the mechanisms 
driving diversity change.
Conclusions: We discuss the limitations and challenges of this integrative approach and highlight how it offers a comprehen-
sive framework for understanding the drivers of biodiversity change across scales. This framework facilitates a more nuanced 
understanding of how human activities impact biodiversity, ultimately paving the way for more informed actions to mitigate 
biodiversity loss across spatial and temporal scales.
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1   |   Introduction

Quantifying multiple aspects of the ongoing biodiversity crisis 
and delivering a comprehensive evaluation of its magnitude is 
a key challenge. Global empirical studies documenting species 
diversity changes show a complex picture (Cardinale et al. 2018; 
Keck et al. 2025). First, global and regional decreases in species 
richness (gamma-diversity) appear to contradict local obser-
vations of “no net loss” or increases in species number (alpha 
diversity) (Vellend et  al.  2013; Primack et  al.  2018; Boënnec 
et al. 2023). Second, the reduction of diversity among commu-
nities (beta diversity), aka biotic homogenization, is recognised 
as a pervasive feature (Magurran et al. 2015). This phenomenon 
might explain the apparent contradiction between alpha and 
gamma-diversity trends by attributing local increases in species 
richness to expanding “winner” species, while regional or global 
decreases result from the extinction of “loser” species. However, 
this interpretation is difficult to test due to uncertainty regard-
ing the spatial scale at which homogenization occurs and is in-
creasingly challenged by empirical evidence (Buhk et al. 2017; 
Blowes et al. 2024; Keck et al. 2025). Despite improved clarity 
and guidance on the use of metrics to assess temporal biodiver-
sity trends at different scales (McGill et al. 2015), fundamental 
gaps remain. A key limitation is that the spatial scaling of di-
versity is not fully integrated in a continuous way, often com-
paring artificially defined ‘local’ or ‘regional’ scales without 
providing a clear mechanistic connection between metrics and 
scales of diversity change. To address the challenge associ-
ated with scaling of biodiversity patterns, existing frameworks 
and their extension have provided valuable tools for assessing 
diversity changes across scales. In particular, recent develop-
ments have leveraged the study of diversity-scaling relation-
ships for species (Azaele et al. 2015; Chase et al. 2019; McGlinn, 
Engel, et al. 2021; McGlinn, Xiao, et al. 2021) or traits (Mazel 
et  al.  2014) with a focus on spatial differences or focused on 
temporal dynamics without considering multiple spatial scales 
(Dornelas et al. 2013). However, they often fail to integrate both 
temporal and trait-based perspectives, limiting their ability to 
uncover causal mechanisms of biodiversity change. Integrating 
the spatial and temporal components, but also integrating spe-
cies traits into the analysis of temporal biodiversity trends, 
hence represent crucial steps forward. This integration serves a 
dual purpose: (1) changes in trait composition and diversity can 
inform about shifts in ecosystem functioning and community 
composition, and (2) trait-based approaches offer a mechanistic 
understanding of taxonomic diversity changes, allowing us to 
infer whether observed trends arise from processes such as en-
vironmental filtering, competition, or anthropogenic pressures. 
We here argue that explicitly bridging macroecological scaling 
laws with temporal dynamics and species traits approaches (via 
categorisation into functional groups or by using continuous 
traits) is a promising avenue to address these gaps and that it can 
be achieved by linking already existing frameworks.

Macroecology has long stated that macroecological patterns re-
sult from invariant laws that depict changes in diversity across 
scales (Brown  1995; Gaston and Blackburn  2000; McGill and 
Collins 2003; Azaele et al. 2015). For instance, the well-known 
species–area relationship (SAR), species-accumulation curve 
(SAC) and distance decay of similarity (DDS) integrate diver-
sity across continuous scales by describing changes in species 

richness or beta diversity with area, number of samples, or geo-
graphic distance between samples. These laws define paramet-
ric functions that describe the expected change in diversity with 
scale. Macroecological patterns have been partly extended to 
address temporal biodiversity changes (Engen et al. 2002; Harte 
et al. 2021), in particular to quantify the effects of disturbance 
on species diversity (Petraitis et al. 1989; Newman et al. 2020; 
Franzman et al. 2021). They thus offer the benefit of explicitly 
incorporating ecologically meaningful measures of scales that 
are relevant across ecosystems. An additional benefit of exam-
ining biodiversity dynamics through the lens of macroecolog-
ical laws is that their variations are intrinsically linked to the 
total number of individuals (abundance), the distribution of 
abundance among species (evenness) and conspecific spatial ag-
gregation (McGill and Collins  2003; Azaele et  al.  2015; Chase 
et  al.  2018). These three descriptors, commonly referred to as 
proximate components, bring a deeper understanding of diver-
sity changes while integrating changes at the population scale, 
for which the average decline in population abundance appears 
as another critical aspect of biodiversity loss (Loh et  al.  2005; 
Leung et al. 2022). Yet, the study of temporal diversity changes 
based on such approaches is still marginal. Only a few em-
pirical studies have attempted to integrate macroecological 
(spatial) patterns across time (White et al. 2010) or have stud-
ied the temporal dynamics of macroecological patterns (Adler 
et  al.  2005; Blowes et  al.  2022; Terry and Rossberg  2023; van 
Klink et al. 2024) in the context of directional changes such as 
anthropogenic pressures.

Species abundance and diversity alone do not fully capture the 
multifaceted nature of biodiversity. It has long been recognised 
that species trait characteristics bring a complementary and es-
sential perspective to biodiversity thanks to their link to ecosys-
tem functions and services (Lavorel and Garnier 2002; Cadotte 
et al. 2011). For instance, the loss of functional diversity per unit 
of habitat loss (as measured from a functional diversity area rela-
tionship) is likely a more accurate predictor of ecosystem vulner-
ability than the loss of individual species. A decrease of a certain 
level of functional diversity—typically associated with specific 
combinations of functional traits—can jeopardise ecosystem 
functionality. In contrast, the loss of a single species may have 
little or no functional effect if other species with similar roles 
continue to thrive (Srivastava et al. 2012). Incorporating traits 
into macroecological laws is an active field of research (Mazel 
et al. 2014), but the temporal aspect of these laws remains largely 
unexplored. Linking the temporal perspective of macroecologi-
cal theory with trait-based approaches can illuminate our un-
derstanding of what drives biodiversity changes and at which 
scales.

Our goal here is not to propose yet another biodiversity frame-
work. Rather, we aim to synthesise and connect existing 
macroecological and trait-based concepts to stimulate new in-
terpretations and applications in biodiversity change research. 
We first outline how temporal variation in macroecological pat-
terns integrates diversity change across spatial scales, then we 
explain how recent developments in macroecology theory can 
help to better understand changes in biodiversity. We then show-
case how integrating species traits and dynamic macroecologi-
cal patterns can link changes to drivers. We finally outline the 
current pitfalls limiting the generalisation of such an approach 
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and how to better leverage dynamic macroecological patterns 
to attribute and quantify the potential effects of anthropogenic 
drivers on diversity changes across scales in the future (McGlinn 
et al. 2019; Gonzalez et al. 2023).

By doing so, a path towards richer and more robust insights into 
how human activities affect biological diversity over time and 
space will emerge.

2   |   Dynamic Macroecological Patterns Integrate 
Diversity Changes Across Time and Space

Beyond data deficiency and statistical issues, the lack of ex-
plicit consideration and reporting of the scale at which diver-
sity changes are estimated is a major issue when reporting 
and quantifying biodiversity changes (Estes et al. 2018). Even 
when a specific scale such as local alpha diversity is the focus, 
the actual sampled area is often not clearly reported (Blowes 
et al. 2024) and the definition of what is “local” or “regional” 
changes significantly with the organism and biodiversity met-
ric of interest. For example, even within a single taxonomic 
group such as vascular plants, the definition of local scale 
is likely to vary between a herbaceous and a woody species. 
Similarly, regional gamma-diversity is generally tightened to 
the study's spatial extent, often without proper consideration 
of the actual area or the fraction of the regional species pool 
covered by observations. Consequently, the lack of clarity re-
garding the examined scales and their ecological relevance 
can affect the interpretation and comparability of biodiversity 
change across spatial scales. Importantly, it can also affect 
measures of beta diversity, often defined as the ratio or dif-
ference between regional (gamma) and local (alpha) diversity 
(see Figure  1), again due to inconsistent definitions of local 
and regional.

We argue that macroecological patterns that integrate diver-
sity across an explicit spatial scale or sampling effort offer a 
valuable, theory-grounded solution to the aforementioned 
scaling issues. For example, the well-known SAR describes 
the expected increase in the number of species with the area 
sampled, generally described as a simple function with two 
or three parameters (Connor and McCoy 1979; Dengler 2009). 
However, common biodiversity monitoring schemes rarely 
cover contiguous areas but instead generally focus on scat-
tered sampling units. In this case, the SAC, describing the 
positive relationship expected between the number of species 
sampled in a group of sites and the number of sites, appears 
more suited (Figure  1A). This macroecological pattern can 
describe diversity continuously from a single site (α species 
richness, i.e., often akin to local scales) to multiple sites (γ 
species richness at the maximum number of sampling sites), 
which can represent ‘regional’ or even global scales (in the 
case where the entire Earth is sampled); the pattern can be 
summarised by a limited number of parameters (e.g., inter-
cept and slope) depending on the best model to fit the data. As 
the turnover of species, or β diversity, can be defined as γ/α, 
the SAC can also describe species turnover for any number 
of samples, called beta rarefaction (Ricotta et  al.  2019). We 
will thus further base our argumentation and illustrate our 
ideas using SACs, primarily due to their compatibility with 

the spatially scattered sampling of most biodiversity monitor-
ing schemes. But note that our central arguments regarding 
temporal dynamics apply equally to other diversity-scaling 
relationships (e.g., species–area relationships [SARs], rarefac-
tion curves, or distance decay).

Looking at temporal changes in SAC (e.g., with richness of fish 
species from 1970 to 1995, see Figure  1B) integrates changes 
continuously from local to global scales and effectively sum-
marises diversity changes of numerous forms of diversity 
(McGill et al. 2015). In a first example, a temporal increase in 
γ richness will bend the SAC upwards at broad scales (top left 
in Figure  1C), which can be measured as an increase in the 
SAC slope over time but no change in the intercept. In a second 
example, an increase in site-average α richness bends the SAC 
upwards at local scales and will be measured as a decrease in 
the SAC slope over time and an increase in the intercept (top 
middle in Figure 1C). In both examples, the resulting β diver-
sity also changes at larger or smaller scales, respectively, for 
the first and second examples. Looking at change in the SAC 
allows a supplementary layer of understanding, as combinations 
of observed diversity changes across scales are underpinned by 
compositional changes in terms of species occupancy. In the sec-
ond example, observed diversity changes can be interpreted by 
the replacement of range-restricted species by widespread spe-
cies (Blowes et al. 2024). In other cases, a similar increase in α 
richness and γ richness will shift the SAC up without changing 
its slope (bottom-left in Figure 1C), while a combination of an 
increase in α richness and a decrease in γ richness will change 
the slope of the SAC (temporal decrease in the slope of the SAC) 
without shifting its overall level (no change in intercept; bottom 
middle in Figure 1C). Most combinations of SAC changes can 
be linked to temporal compositional changes of range-restricted 
versus widespread species (Socolar et al. 2016; Chase et al. 2019; 
Leroy et al. 2023). However, some combinations are likely to be 
impossible because of the link between alpha, gamma and beta 
diversity (Ricotta et al. 2019; Chao et al. 2023), and mapping be-
tween compositional changes and changes in SAC parameters 
is not fully resolved and requires more research. It is thus pos-
sible to translate temporal changes in different forms of diver-
sity arising from the combination of spatial scales and diversity 
metrics (McGill et al. 2015) in terms of changes in the parame-
ters of diversity-scaling relationships along a spatial continuum. 
Altogether, such integration through continuous spatial scale 
can clarify diversity trend detection by avoiding the ambiguity 
inherent in interpreting and comparing trends when they are 
reporting diversity change at distinct but loosely defined scales.

3   |   Three Low-Level Biodiversity Components 
Underpin Dynamics of Macroecological Patterns

Macroecology theory acknowledges that scaling of diver-
sity emerges due to the spatial structuring of species abun-
dance distribution (SAD) within species' geographic ranges 
(McGill and Collins 2003; Storch et al. 2008). Subsequent ap-
plication of this theory (Azaele et al. 2015; Chase et al. 2018; 
Keil et al. 2021; McGlinn, Engel, et al. 2021; McGlinn, Xiao, 
et  al.  2021; Blowes et  al.  2022) has uncovered that diversity 
accumulation across scales is governed by three lower-level 
components (Figure  2): the total number of individuals in 
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communities (density), the distribution of abundance among 
species (evenness) and the aggregation of individuals in space. 
As such, these building blocks of biodiversity patterns are de-
fined as “proximate” components governing parameters of 
macroecological patterns because they differ from ultimate 
drivers such as climate or direct human species extirpations/
introductions (McGlinn et al. 2019). While the examination of 
proximate components to uncover spatial biodiversity patterns 
is already operational (McGlinn et al. 2019), it has mostly been 
used to compare the effect of specific drivers between spatial 
contexts or to separate treatment effects (Azaele et al. 2015). 
While promising, only a few studies using it actually integrate 
the temporal dimension to better understand species diversity 

trends (Blowes et  al.  2022). We thus call for a more general 
application of this approach on dynamic data. Detecting and 
quantifying the role played by proximate components on 
the temporal dynamics of macroecological patterns would 
provide a supplementary layer of understanding of diversity 
changes across scales and metrics. We claim that it also has 
direct implications in terms of conservation actions, as it rep-
resents a relevant opportunity to gain insights into how an-
thropogenic drivers impact diversity dynamics across scales 
(Blowes et al. 2020). Instead of focusing on the direct effect of 
humans on diversity, conservationists should rather focus on 
the direct effect of humans on species abundance, evenness 
and aggregation, and how in turn these affect biodiversity 

FIGURE 1    |    (A) Species accumulation curves (SAC) describe how the number of species sampled increases with the number of samples M. This 
macroecological pattern can describe biodiversity from small to large spatial extents depending on the number of samples M, and include any defini-
tion of ‘local’ (alpha diversity) and ‘regional’ (gamma diversity) scales, as long as M_local < M_regional. For sake of readability, we depict the extreme 
case where local is a single sample and regional the maximum number of samples. As β diversity can be defined as γ/α, the SAC can also describe 
species turnover for any M, called beta rarefaction. (B) When biodiversity is monitored in time, one can compute SAC for different times (from purple, 
1970 to yellow = 2000), the change in the parameters of the SAC describes change in diversity from local to regional scale in a continuous way (for 
every M values). Here SAC are computed from fish monitoring (Biotime dataset #288). (C) Different possible forms of diversity changes can affect the 
shape of the SAC. The x-axis was log10 transformed in order to ease visualisation at smallest scales.
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change. Indeed, it is likely that human activities directly in-
fluence proximate components, rather than diversity per se 
(van Klink et al. 2024).

Direct human exploitation—such as hunting, fishing, or har-
vesting—represents a clear driver of temporal changes in total 
species abundance. For instance, intensive fishing practices 
have led to pronounced declines in fish abundance globally 
(Myers and Worm  2003). Temporal changes in species abun-
dance also reflect changes in demographic processes, such as 
survival, reproduction and migration (Keil et  al.  2025), which 
can be linked to altered resource availability and habitat quality. 
For instance, a decline in overall abundance within bird com-
munities has frequently been associated with reduced habitat 
quality due to agricultural intensification (Donald et  al.  2001, 
2006). Conversely, an increase in abundance might reflect 

habitat restoration or expansion, such as reforestation, which 
increases resource availability and breeding opportunities for 
forest-dwelling species (Thomas et  al.  2012). Changes in con-
specific spatial aggregation might often result from altered 
habitat structure, connectivity, or landscape fragmentation. 
Increasing aggregation typically occurs when suitable habi-
tats become fragmented, forcing species into smaller, isolated 
patches (Fahrig 2003). Conversely, decreased aggregation might 
reflect improved habitat connectivity or the spread of invasive 
or generalist species (Simberloff et al. 2013). Changes in even-
ness (SAD) provide insights into shifts in community compo-
sition and dominance patterns. Reduced evenness, resulting 
from dominance by fewer species, might indicate habitat deg-
radation or anthropogenic disturbances favouring common spe-
cies at the expense of rare or specialist species, thus reducing 
the overall ecological complexity and resilience of communities 

FIGURE 2    |    Variation in macroecological patterns is underpinned by change in proximate components of diversity across scales. Macroecology 
theory indicates that the abundance (total number of individuals), evenness (species-abundance distribution, SAD) and spatial aggregation jointly 
determine the shape of the species accumulation curve (SAC). In this simulation run using the mobsim R package, a reference SAC (e.g., at t0) is 
compared to SAC (e.g., at t1) after a decrease in the total abundances (purple), a decrease in spatial aggregation of individuals (yellow), or a decrease 
in evenness (green), while keeping a constant species pool of 100 species and randomly sampling 200 virtual plots (area = 0.005). Each indepen-
dent change in a proximate component has a different influence on the SAC, either on the intercept (see inner zoom) or on the slope coefficient. 
Simulations were performed using the sim_thomas_community() function from the mobsim R package. In black, the reference simulation was run 
with s_pool = 100 n_sim = 1000, sad_type = “lnorm”, sad_coef = 1 and sigma = 0.1. In purple, the “lower abundance” simulation with n_sim/3, in 
green, the “lower evenness” simulation with a steeper SAD sad_coef *5, and in green, the “higher aggregation” simulation with a higher spatial 
clustering of individuals with sigma/2. The species accumulation (also called the sample-based rarefaction curve) for each simulation was computed 
using the function specaccum() from the vegan R package. In the x-axis, the number of samples refers to the number of plots sampled.
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(Hillebrand et al. 2008). Increased evenness might occur when 
disturbance regimes or conservation management actions re-
duce competitive dominance, allowing coexistence of more 
species and potentially indicating more stable or recovering eco-
systems (Blowes et al. 2020).

Currently though, some limitations still prevent a more general 
elucidation of the effects of proximate components on diversity 
changes. First, the intricate interdependence between prox-
imate components is not elucidated (Storch et al.  2018; Avolio 
et al. 2019; Blowes et al. 2022). Whether and how much abun-
dance, evenness and spatial aggregation influence each other, 
and how they might themselves be influenced by diversity 
patterns, still need to be clarified. Such likely existence of dy-
namic feedbacks is still to be explored with the proper methods 
and data, for example, using empirical dynamic modelling (Ye 
et al. 2015; Chang et al. 2017) applied to dynamic data. Second, 
the appropriate metrics and the scale at which these proximate 
components should be quantified remain open questions, in par-
ticular for SAD (Avolio et al. 2019) and spatial aggregation (Keil 
et al. 2021). In any case, this change of perspective calls for a 
more systematic monitoring of species abundance (or density) 
and traits (see next section) and more standardised monitoring 
protocols allowing the estimation of simultaneous changes in 
abundance and spatial aggregation.

4   |   Integrating Trait-Based Perspectives Into 
Temporal Dynamics of Macroecological Patterns 
Helps Move Toward Attribution of Diversity 
Changes to Human Drivers

Following a clear detection of trends in diversity across scales, a 
subsequent step, called “attribution”, lies in evaluating the con-
tributions of potential drivers (Gonzalez et al. 2023). Taxonomic 
approaches have inherent limitations for (human) drivers attri-
bution because species identity itself is not related to its suscep-
tibility to a given driver. In some cases, local constant species 
richness may hide strong species turnover driven by human-
induced environmental changes, which can involve stark al-
teration in trait composition (Barnagaud et  al.  2017). In other 
cases, changes in species composition might not involve changes 
in trait composition (McLean et al. 2019). We argue that advanc-
ing species-based approaches (such as the one described above) 
thanks to trait-based approaches can allow for a more sensitive 
attribution of diversity changes to human drivers and a more 
nuanced understanding of community responses to threats and 
disturbances (Mouillot et al. 2013; Parmesan et al. 2013).

The first reason is that species traits, encompassing characteris-
tics of life history, morphology, habitat or climatic preferences, 
can be robust indicators of species' susceptibility to anthro-
pogenic impacts (Cardillo et  al.  2005; Chichorro et  al.  2019; 
Carmona et  al.  2021). Because traits are linked to species re-
sponses to global changes, community recomposition can also 
be measured by change in trait composition, making it possible 
to dissect and understand the nuanced recomposition of com-
munities under various threats (Devictor et al. 2012; Kampichler 
et  al.  2012; Cheung et  al.  2013; Mouillot et  al.  2013; Gaüzère, 
Iversen, et al. 2020) that may remain unnoticed by taxa-based 
metrics alone (Villéger et al. 2010). Considering species traits in 

conjunction with dynamic macroecological patterns thus has a 
high potential to enlighten the mechanisms behind ecological re-
sponses across diverse taxa (Smith et al. 2013; Mazel et al. 2014; 
Ricotta et al. 2019). Trait distributions and/or functional diver-
sity provide a complementary perspective to taxonomic richness 
by highlighting shifts in community composition that may be 
masked in taxonomic assessments alone. For instance, changes 
in functional diversity can indicate shifts in species interactions 
or environmental filtering (Münkemüller et  al.  2020), even 
when decoupled from taxonomic richness changes (McLean 
et al. 2019). Conversely, observed taxonomic diversity changes 
may be better explained by analysing how functional diversity 
is restructured over time in response to environmental pres-
sures. This approach has been successfully used, for example, 
to determine whether human activities increase the abundance 
of species with specific characteristics at the expense of oth-
ers: common/widespread/generalist/small-bodied versus rare/
restricted/specialist/large-bodied species (Purvis et  al.  2000; 
Cardillo et  al.  2005; Cooke et  al.  2019), or affect the spatial 
aggregation of individuals and species via physical barriers or 
landscape configuration (Tucker et al. 2018, 2021).

The second reason is that patterns of trait diversity can re-
veal key insights into community assembly processes (Weiher 
et al. 2011): low functional diversity (relative to random expec-
tation) can result from environmental filtering or biotic hierar-
chical competition, while high functional diversity can indicate 
interspecific competition (Smith et  al.  2013; Münkemüller 
et al. 2020). Interestingly, the influence of community assembly 
processes is thought to vary as a function of spatial scale and 
should thus be expected to leave a variable imprint on functional 
diversity depending on scale (Gaüzère et al. 2023). Over the last 
decade, several studies have recast macroecological laws from a 
functional trait perspective (e.g., Lamanna et al. 2014; Hulshof 
and Umaña  2023; Matthews et  al.  2023). Functional diversity 
area relationships (FDAR) extend the concept of SAR by link-
ing functional trait diversity to habitat size, helping disentan-
gle the effects of biotic competition and environmental filtering 
(Mazel et al. 2014). Functional rarefaction extends the context 
of SAC to traits (Ricotta et al. 2012). Similarly, distance decay 
of functional similarity (FDDS) enables a spatial assessment 
of trait-based ecological similarity, providing a more nuanced 
understanding of biodiversity responses to environmental gra-
dients (Graco-Roza et al. 2022). FDAR, for example, identifies 
the scale-dependence of environmental versus biotic filtering 
(Smith et al. 2013), while FDDS deciphers the relative effect of 
pure dispersal from environmental and biotic filtering depend-
ing on the spatial scale (Graco-Roza et al. 2022).

As such, linking trait-based approaches and dynamic macroeco-
logical patterns offers promising means to better identify the in-
fluence of global change drivers on diversity dynamics (Chapin 
et al. 2000; Violle et al. 2014). Note that we do not aim to intro-
duce a new framework to assess trait-based diversity changes 
but propose two methods to integrate existing trait-based per-
spectives into the temporal dynamics of diversity-scaling re-
lationships. By linking species traits—such as life history, 
morphology and habitat preferences—to macroecological dy-
namics, we highlight how trait-based macroecological patterns 
provide a more sensitive lens for detecting human impacts on 
biodiversity.
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However, the theoretical foundations of these laws are still de-
veloping. One obvious reason is that the shape of trait-based 
macroecological patterns depends on the traits under consid-
eration, even though recent studies indicate a low-dimensional 
evaluation of functional spaces may capture the primary di-
mensions of organismal functioning across taxonomic groups 
(Mouillot et al. 2021).

A first, straightforward and easy way to integrate the trait-
based perspective into the dynamic macroecological patterns 
is to compare dynamics between groups of species with con-
trasting traits or requirements across groups. For example, 
one might anticipate distinct responses between endotherms 
and ectotherms, small versus large organisms, cold versus 
hot dwellers, sessile versus motile species and those with 
varying mating systems, genome sizes and longevity (Staab 
et al. 2023). This approach has proven useful to attribute fish-
eries impact on diversity differences between protected and 
unprotected areas (Blowes et al. 2020). A second approach is 
to use quantitative trait values to build trait-based macroeco-
logical patterns. This could entail switching from traditional 
macroecological measures (SAR, DDS, SAD) to the afore-
mentioned emerging trait-based equivalents (FRAR, FDDS, 
TAD) (Figure  4). Both approaches only require knowledge 
about species' mean trait values, which is more and more 
accessible from databases for many taxonomic groups, thus 
facilitating the construction of “trait-based” dynamic macro-
ecological patterns (Smith et al. 2013; Mazel et al. 2014; Ricotta 
et al. 2019; Matthews et al. 2023) and offering a more compre-
hensive understanding of biodiversity dynamics in the face of 
global change (Graco-Roza et al. 2022; Koffel et al. 2022). Note 

that recent studies have also shown the fundamental relation-
ships linking traits-abundance distribution and richness-
productivity relationships (Pigot et al. 2025), opening exciting 
perspectives for trait-based macroecology.

By building on established methods and extending them to trait-
based macroecological patterns, we here delineate a roadmap to 
better quantify and interpret human-induced changes in biodi-
versity at multiple scales (Figure 3).

5   |   Attributing Detected Diversity Changes 
to Anthropogenic Drivers Using (Trait-Based) 
Dynamic Macroecological Patterns

While changes in diversity can be detected and quantified with 
large spatio-temporal inference, causally attributing them to 
ultimate (human) drivers is rarely accomplished. Yet, many 
temporal diversity changes are thought to be driven by an-
thropogenic impacts on the environment. Land and sea use 
change, climate change, pollution, invasive species and direct 
exploitation are all thought to have predominantly negative ef-
fects on diversity (Díaz et al. 2020), while land protection and 
biodiversity restoration actions are thought to have a positive 
effect (Kail et  al.  2015; Meli et  al.  2017). Three main factors 
make the attribution of diversity changes to human drivers 
challenging. First, human drivers impact diversity patterns 
differently depending on the spatial scale. Here, we have seen 
that a dynamic macroecological pattern approach, which con-
siders continuous scale-dependence, can clarify which human 
drivers influence diversity along an explicit scale continuum 

FIGURE 3    |    Integrating trait-based perspectives into dynamic macroecological patterns can be achieved by comparing temporal changes in SAC 
(A, top-left) between different functional groups (A, bottom) or by measuring temporal changes in functional diversity accumulation (A, top-right). 
Integrating a trait-based perspective with proximate diversity components can be achieved by moving from species-abundance distribution (B, top-
left) to species trait distribution describing the variations in the number of species holding a particular trait value (B, top-right) or via trait-abundance 
distribution describing the abundance of species holding particular trait values (B, bottom-left). Here exemplified using species biomass. Dots are 
individuals from different species (one colour per species).
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8 of 17 Global Ecology and Biogeography, 2025

FIGURE 4    |    Graphical causal models integrating dynamic macroecological patterns with potential causal pathways from human drivers (top) to 
proximate components (middle) to trait-based dynamic macroecological patterns (bottom). All potential links across taxa and contexts are in grey. 
For example, in the case of diversity changes in exploited marine ecosystems, expert knowledge might contribute to specifying a causal pathway 
where changes in species richness across scales in response to exploitation (wild capture fisheries) could be mediated by the effect of fisheries on the 
total number of individuals, particularly on exploitation-sensitive fishes (Blowes et al. 2020), and to changes in SAD (for all species). We emphasise 
this pathway to exemplify a potential, much simplified case, which is not supposed to reflect reality. Moreover, it does not incorporate possible com-
pensation effects leading to the increase in abundance and size of small species in response to the decrease of large predatory species.
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(Powell et  al.  2013). Second, diversity measures focused on 
species identity alone are inherently limited in linking specific 
drivers to spatio-temporal patterns in diversity. As outlined 
in the previous section, trait-based dynamic macroecological 
patterns can provide a complementary, functional perspective. 
Third, human drivers' effects on diversity are complex and in-
tercorrelated (Bowler et al. 2020) and interact with each other 
(Gaüzère, Barbaro, et  al.  2020). Such intrications can lead to 
confounding effects and biases when trying to measure their 
influence on biodiversity patterns, particularly if the influenc-
ing variables are not available or incorrectly related. A way to 
address this third issue is to rely on structural causal model-
ling (Arif and MacNeil 2023). A graph model represents quali-
tative causal relationships as a directed graph where variables 
of interest are nodes related by edges that represent potential 
directional influence. Such graphs can be used to clearly set 
and visualise assumptions about the cause-and-effect relation-
ships between anthropogenic drivers and diversity changes 
and to identify the role of variables (i.e., confounder, media-
tor) when targeting a causal effect. Graphs can be built from 
expert knowledge alone, or with the help of causal discovery 
algorithms that look for causal signatures in the data (Glymour 
et al. 2019). This allows assessing the need for statistical adjust-
ments (i.e., in case of confounders), which is especially relevant 
when causal relationships are determined from observational 
data (for more explanations, see Arif and MacNeil 2023). Such 
a priori identification of the role of potential driver variables 
offers a more comprehensive and relevant expectation of 
human impacts on biodiversity (Laubach et al. 2021; Gonzalez 
et al. 2023; Runge 2023; Runge et al. 2023).

We propose to leverage the “dynamic (trait-based) macroeco-
logical pattern” perspective described above by integrating it 
with the structural causal modelling framework for causal at-
tribution. Studying the proximate components of biodiversity 
change (abundance, evenness, spatial aggregation, Figure  2) 
in the context of structural causal modelling allows identifica-
tion of direct causal pathways from (ultimate) human drivers 
via change in proximate components to change in macroeco-
logical patterns, thus enabling better understanding of the un-
derlying drivers (and potentially mechanisms) through which 
human drivers impact species diversity over time and across 
spatial scales. We can extend causal graphs by explicitly in-
cluding proximate components to hypothesise specific paths 
of action for different contexts (Figure 4). For example, in the 
case of wild capture fisheries, a causal graph might indicate 
how this human activity drives changes in aquatic animal 
diversity, mainly indirectly, through selective effects on the 
total number of individuals and SADs. In practice, switching 
from qualitative causal graphs to (quantitative) causal models 
fitted to empirical time series can be achieved using a struc-
tural equation modelling (SEM) approach. These models can 
estimate the effects of the proximate components as well as 
the direct and indirect effects of potential (human) drivers 
on SAR and DDS parameters (DeMalach et  al.  2019), while 
handling the dynamic nature of time-series data using, for 
example, latent growth curve (LGC) models or ARMA-based 
SEMs (Fan et al. 2016). Compared to already existing frame-
works (e.g., mobr, see Box 1), causal graphs and SEM enable 

BOX 1    |    Methods for dynamic macroecological patterns.

Simulations of macroecological patterns

•	 mobsimr (May et al. 2018) is an R package designed for 
simulating the abundances and spatial distribution of 
different species. This package is particularly useful for 
deriving biodiversity patterns and simulating sampling 
of biodiversity. It enables researchers to study how abun-
dance, evenness and aggregation drive the shape of SAC, 
making it a valuable tool to understand the intrinsic 
links between proximate components and macroecolog-
ical patterns. Although not primarily designed to study 
the temporal dynamics of macroecological pattern, cur-
rent developments are going toward the extension of the 
capabilities of mobsimr (https://​github.​com/​sRealmWG).

Empirical analyses of macroecological patterns

•	 Rarefy R package (Thouverai et  al.  2020) summarises 
directional and non-directional species accumulation 
(Chiarucci et  al.  2009) and multi-site beta diversity 
(Ricotta et al. 2019) as a function of sampling effort (i.e., 
via SACs), hence measuring spatial autocorrelation in 
species composition among plots along an a priori de-
fined spatial, temporal or environmental gradient.

•	 mobr R package (McGlinn, Engel, et al. 2021; McGlinn, 
Xiao, et  al.  2021) performs analyses of biodiversity 
data at various spatial scales and quantifies the roles 
of proximate components (evenness, density and ag-
gregation) in shaping macroecological patterns, based 
on the Measurement of Biodiversity framework (Chase 
et  al.  2018; McGlinn et  al.  2019; McGlinn, Engel, 
et al. 2021; McGlinn, Xiao, et al. 2021).

•	 Keil et al. (2021) test and compare approaches to quan-
tify interspecific spatial associations on empirical and 
simulated data and provide recommendations for how 
to use and interpret them in biodiversity science. The R 
package spasm allows computing and comparing differ-
ent measures of spatial aggregation (https://​github.​com/​
petrk​eil/​spasm/​​tree/1.​4).

•	 Keil and Chase (2022) proposes a machine learning ap-
proach to estimate biodiversity changes over time by al-
lowing for the interpolation of biodiversity data across 
spatial scales while accounting for variations in data 
availability and completeness.

Causal graph building and modelling

•	 DAGitty is a browser-based environment for creating, 
editing and analysing causal diagrams (also known as 
directed acyclic graphs or causal Bayesian networks). 
The focus is on the use of causal diagrams for minimis-
ing bias in empirical studies in epidemiology and other 
disciplines: https://​dagit​ty.​net/​.

•	 piecewiseSEM R package (Lefcheck  2016) is an imple-
mentation of confirmatory path analysis for R. The 
package allows for performing structural equation mod-
els (SEM) on many types of statistical models, such as 
generalised linear, phylogenetic least-square, and mixed 
effects models, and as such can handle random effects 
and temporal autocorrelation: https://​jslef​che.​github.​io/​
sem_​book/​.
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the integration of several drivers and thus to consider their 
interaction, which is essential for (many) real-world scenar-
ios. This enhanced understanding of causal pathways from 
human activities to diversity changes across scales could then 
be used to propose concrete control policies aimed at impact-
ing particular components (Blonder et  al.  2023) in order to 
achieve effective prevention and mitigation of diversity loss.

6   |   Case Study

To illustrate the ideas of the previous sections, we analysed di-
versity changes across scales for farmland and forest birds in 
France between 2002 and 2013. The temporal trends of birds, 
particularly the decline of farmland birds in Europe, have been 
well studied (Rigal et al. 2023; Reif et al. 2024), but primarily 
through the lens of species abundance and at a local scale. Thus, 
our goal is to demonstrate how integrating a temporal per-
spective with diversity-scaling relationships between different 
functional groups can provide novel insights into a well-studied 
system. This case study is thus meant as a simplified toy exam-
ple. Indeed, many aspects of the interpretations below would 
benefit from more comprehensive analyses informed by a mech-
anistic understanding of avian biodiversity change in France.

In this case study, we specifically address three main questions, 
following the four sections of the paper (Figure 5). To assess di-
versity changes over time and space, we analysed avian species 
richness accumulation across sampling efforts (1–400 sites) per 
year and estimated temporal richness changes at each scale. We 
then assessed how low-level biodiversity components (density, 

evenness and aggregation) underpin the dynamics of macro-
ecological patterns. To integrate trait-based perspectives, we 
conducted separate analyses for two functional groups based on 
habitat preference. Finally, we constructed a causal graph and 
used temporal anomalies to evaluate the effects of land cover 
and climate change on the components driving avian richness 
changes.

6.1   |   Methods

We used data from the French Breeding Bird Survey (FBBS), 
a long-term monitoring programme designed to assess the 
population dynamics of common passerine birds in France. 
Skilled volunteers conduct standardised bird counts at the 
same 4 km2 sites annually, which are randomly selected 
within a 10 km radius of their home locality. For this study, 
we focused on data from 2002 to 2013 to analyse decadal 
changes that are less prone to nonlinear trends while avoiding 
biases associated with the initial monitoring year (2001). Bird 
species were categorised as farmland or forest species using 
the PECBMS classification. We incorporated environmental 
data, including temperature during the bird breeding season 
(sourced from CHELSA; Karger et al. 2017) and habitat com-
position and diversity (using CORINE Land Cover; European 
Environment Agency  2010). We calculated SAC and prox-
imate components of species trends using the mobr R pack-
age (McGlinn et al. 2019). We quantified the contributions of 
changes in the total number of individuals (N), the relative 
abundance distribution (SAD) and conspecific aggregation 
(agg) to species richness changes, respectively, by comparing 

FIGURE 5    |    Conceptual description of the potential causal pathways from human drivers (bottom) to proximate biodiversity components (middle) 
to temporal changes in diversity scaling (top) of farmland and forest birds. Empirical effects of each arrow are shown in Figure 7, with corresponding 
letters (A: Diversity changes, B: Diversity components, C: Driver effects).
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three distinct types of SACs (for more details, see Appendix 
S1 or McGlinn, Engel, et al. 2021; McGlinn, Xiao, et al. 2021). 
We then estimated the effects of habitat cover, habitat diver-
sity and temperature on the resulting N, SAD and agg effects 
for each sampling effort. We first drew a causal graph link-
ing each predictor to each component based on our expertise 
and literature (Figure  5). We analysed this graph to detect 
potential confounders, mediators and collider variables and 
adjusted the model structure accordingly (see Appendix S1). 
For each year of monitoring, we computed the accumulated 
sum of each predictor variable along sampling effort, ensuring 
that the scale-dependent relationships between predictors and 
response variables could be captured effectively. To assess the 
effect of predictors on each component, we fitted three linear 
models (N, SAD, agg) at each sampling effort to estimate the 
relationship between each component effect value and tempo-
ral anomalies (n = 12 years) of driver values (i.e., scaled to zero 
mean and unit variance), as follows:

6.2   |   Results

A first exploration of SACs across time (Figure  6) reveals 
small but divergent temporal changes in species accumula-
tion. For farmland birds, SACs got consistently lower through 
time (yellow lines below purple lines regardless of spatial 

scale), revealing a spatially stationary decrease in species 
richness through time. For forest birds, accumulation curves 
were higher through time at lower scales (i.e., between 1 and 
20 plot sampled, yellow lines are above purple lines), but not 
at larger scales where curves cross each other, revealing an 
increase in richness at lower scales but no temporal trends at 
larger scales.

6.3   |   Spatial Scaling of Diversity Dynamics

Computing the linear trend of species richness along a con-
tinuum of scales for farmland (Figure  7A left) or forests 
(Figure  7A right) showed marked differences in diversity 
change across sampling effort. For farmland birds, our analy-
sis revealed spatially stationary decreases in species richness 
ranging from −0.15 sp year−1 (between 1 and 150 plot sam-
pled) to −0.2 sp year−1 (at 400 plots sampled), i.e., indicating a 
relatively uniform loss of species across scales. In contrast, for 
forest birds our analysis revealed scale-dependence of diver-
sity changes, with substantial and significant increases in spe-
cies richness of 0.15 sp year−1 for a smaller number of samples 
(< 50 plots sampled), no significant trends between 100 and 
150 plots sampled, and a weak positive trend (0.075 sp year−1) 
for larger sampling effort (> 200 plots sampled). Hence, small-
scale increases in forest bird assemblages do not translate into 
increases at larger scales and instead lead to spatial homo-
genisation (decrease in beta diversity at intermediate scales) 
(see Figure 1C). Note that when performed on all bird species 
from our dataset (i.e., without separating “functional groups” 
based on habitat), the same analyses showed an absence of any 

N ∼ cover_Forest + Temperature

SAD ∼ cover_Forest + Habitat_diversity + Temperature

agg ∼ Habitat_diversity + Temperature

FIGURE 6    |    Spatially based species-accumulation curves for farmland birds (left panel) and forest birds (right panel) across multiple sampling 
years (2002–2013). The x-axis indicates the cumulative number of plots (or plot equivalents) sampled on a logarithmic scale, while the y-axis shows 
the corresponding species richness. Each coloured line represents a different sampling year (ranging from 2002 in purple to 2012 in yellow).
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FIGURE 7    |     Legend on next page.
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significant temporal change in diversity at any scales (results 
not shown).

6.4   |   Lower-Level Biodiversity Components

The contribution of the three components (density N, spatial 
aggregation agg and evenness SAD) to diversity changes varied 
with scale and functional groups. For farmland birds (Figure 7B 
left), species richness decrease was driven by density (fewer in-
dividuals, in green) across all scales, combined with evenness 
(relatively fewer rare species, in blue) around 50–150 plots sam-
pled, and higher spatial aggregation (in red) for large sampling 
effort. For forest birds (Figure 7B right), increasing species rich-
ness at small scales was driven by density (more individuals, in 
green) and evenness (more similar species abundances). These 
effects fade away with increasing sampling effort, with only the 
positive effect of density driving the weak increase in species 
richness detected at a large scale.

6.5   |   Human Driver Attribution

Scale-dependent attribution of human drivers to changes in 
components revealed scale-dependent effects of land cover 
and climate change on diversity dynamics. For farmland birds 
(Figure 7C left), our analyses revealed a positive dynamic rela-
tionship between agricultural cover and density across all scales; 
i.e., a temporal decrease in agricultural cover over the study pe-
riod led to a decrease in density (less farmland → fewer individ-
uals). For forest birds (Figure 7C right), our analyses revealed a 
positive dynamic relationship between increasing forest cover 
and increasing density (more forest → more individuals) and 
evenness (more forest → more similar species abundances) at 
a local scale. In contrast, the dynamics of habitat diversity and 
spring temperature appeared to contribute little to biodiversity 
changes, regardless of the components.

6.6   |   Discussion

Bridging macroecology and temporal dynamics in a well-studied 
system and dataset, we showed that novel insights can be gained 
in comparison to an approach focused on local-scale diversity 
dynamics only. First, behind an apparent no net change when 
all species were pooled, studying and comparing diversity be-
tween species “functional groups” defined by their habitat re-
vealed temporal changes in diversity. Second, integrating these 
changes along a continuum of scales exhibited distinct scaling 
patterns for farmland versus forest birds, leading to different 
conclusions about the ongoing homogenisation of biodiversity. 

Our results highlight that diversity changes within a single 
(functional) group are influenced by different components de-
pending on the spatial scale, suggesting that distinct processes 
drive diversity dynamics at each scale. This decomposition of 
diversity dynamics provides a more nuanced analysis and in-
terpretation of the underlying processes and drivers of diversity 
change. We identified that a substantial part of the observed 
increase in forest species richness at the local scale—attribut-
able to increased density and evenness—can be attributed to the 
expansion of forest cover in France. In contrast, the decline in 
farmland bird species richness was only partially explained by 
loss of agricultural land cover via its effect on density, suggest-
ing that other drivers are at play too. For instance, some aspects 
of habitat alteration or fragmentation not taken into account in 
our analyses may have disproportionately impacted specialist 
farmland bird species, leading to reduced evenness. These struc-
tural changes in agricultural landscapes likely also contribute 
to decreased spatial aggregation at broader scales. Collectively, 
our findings underscore the value of integrating diversity com-
ponents and scaling perspectives for disentangling the complex 
drivers of cross-scale biodiversity changes and identifying tar-
geted conservation strategies.

7   |   Concluding Remarks

To date, research on diversity change detection has mainly fo-
cused on separate discrete spatial scales without embracing its 
scale-dependence fully and without accounting for the linkage 
between different metrics, which often produces conflicting “di-
versity trends” that cannot easily be reconciled. In response to 
the need for a coherent framework that embraces complexities 
in biodiversity trends observed at different scales (Cardinale 
et al. 2018; Primack et al. 2018; Boënnec et al. 2024), we sup-
port the study of dynamic macroecological patterns as a way to 
integrate diversity changes in a continuous and scalable man-
ner (Connor and McCoy 1979; Nekola and White 1999). It is im-
portant to note that although here we focused on SAC because 
it is one of the most studied patterns due, among others, to its 
suitability to handle data from most existing standardised bio-
diversity monitoring, the potential of using dynamic macroeco-
logical patterns to understand diversity changes across scales is 
not limited to this specific example. We acknowledge that the 
feasibility of analysing temporal dynamics in diversity-scaling 
relationships ultimately depends on the quality and availability 
of empirical data, the consistency in survey methodologies and 
sampling effort, among others (Magurran and Dornelas 2010; 
Dornelas et  al.  2013; Gotelli and Colwell 2001). However, the 
use of rarefaction curves specifically helps address variability in 
sampling effort across time and space, thereby reducing potential 
biases and improving comparability in biodiversity assessments 

FIGURE 7    |    Diversity temporal changes (A), their underlying components (B) and estimated effects of drivers (C) along increasing scales (sam-
pling effort, x-axis) for farmland (left) and forest birds (right). In A, point size shows the slope of the temporal trend (estimated by the lm R function), 
and the grey envelope shows the lower and higher confidence intervals, with non-significant slopes (at α = 0.05) being shown as transparent points. 
In B, point size shows the size of the effect for each component (red = aggregation “agg”, green = density “N”, blue = evenness “SAD”, and envelopes 
show expectation from null models, with non-significant effects being shown as transparent points). In C, point size shows the effect of each predic-
tor on each component (estimated by the lm R function) and envelopes the lower and higher confidence intervals of each effect, with non-significant 
effects (at α = 0.05) being shown as transparent points.
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(Chao et al. 2014; McGill et al. 2015). While data quality remains 
a central limitation for temporal biodiversity analyses, employ-
ing these methodological safeguards can allow robust interpre-
tations even in the presence of inherent variability.

Macroecological patterns provide bridges from observed di-
versity to ecological processes (Grilli  2020), while effectively 
synthesising varying forms of diversity change and providing 
a clear (albeit more complex) picture of biodiversity dynamics. 
Beyond improving the detection of diversity trends, we outlined 
the importance of studying proximate components of biodiver-
sity changes that are pivotal for understanding diversity dynam-
ics (McGill and Collins 2003; Storch et al. 2008).

We argue that such understanding is essential for accurately in-
terpreting biodiversity trends and their underlying causes. One 
of the strengths of this approach is that most of the required 
tools are already available (Box—metrics and methods for dy-
namic macroecological patterns) and only need to be “tweaked” 
to accommodate temporal data. Furthermore, we discuss how 
integrating trait-based perspective and a causal graphical mod-
els approach into this framework represents two important steps 
towards attributing biodiversity changes to specific anthro-
pogenic drivers. This integration will enable a more nuanced 
understanding of how human activities impact biodiversity at 
various scales (Bowler et al. 2020; Gonzalez et al. 2023). In sum-
mary, dynamic and trait-based macroecological patterns not 
only enhance our ability to quantify diversity changes across 
scales but also provide a powerful tool for identifying, prevent-
ing and mitigating the impacts of human activities on ecological 
systems. It advocates for policies that are informed by a deeper 
understanding of the intricate mechanisms driving biodiversity 
changes.

Acknowledgements

This research is a product of the IMPACTS group funded by the 
Centre for the Synthesis and Analysis of Biodiversity (CESAB) of the 
Foundation for Research on Biodiversity (FRB) and the Ministry of 
Ecological Transition. P.G. was supported by Marie Curie Actions of 
the European Horizon 2020 under REA grant agreement no. 101026394 
(project INDEBT). W.T., P.G. and M.G. also acknowledge support from 
the Horizon Europe OBSGESSION project (N°101134954).

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

All data manipulation and analyses were conducted in R version 4.1.2. 
Key packages included tidyverse for data manipulation and visual-
isation, mobsim (May et  al.  2018) for simulations of Figure  2, mobr 
(McGlinn, Engel, et  al.  2021; McGlinn, Xiao, et  al.  2021) for species 
accumulation and component calculation, and broom for extracting 
model results, supplemented with a few custom functions. The code and 
data are accessible at https://​doi.​org/​10.​5061/​dryad.​cnp5h​qcg9.

References

Adler, P., E. White, W. Lauenroth, D. M. Kaufman, A. Rassweiler, and J. 
Rusak. 2005. “Evidence for a General Species–Time–Area Relationship.” 
Ecology 86: 2032–2039.

Arif, S., and M. A. MacNeil. 2023. “Applying the Structural Causal 
Model Framework for Observational Causal Inference in Ecology.” 
Ecological Monographs 93: e1554.

Avolio, M. L., I. T. Carroll, S. L. Collins, et al. 2019. “A Comprehensive 
Approach to Analyzing Community Dynamics Using Rank Abundance 
Curves.” Ecosphere 10: e02881.

Azaele, S., A. Maritan, S. J. Cornell, et  al. 2015. “Towards a Unified 
Descriptive Theory for Spatial Ecology: Predicting Biodiversity Patterns 
Across Spatial Scales.” Methods in Ecology and Evolution 6: 324–332.

Barnagaud, J.-Y., P. Gaüzère, B. Zuckerberg, K. Princé, and J.-C. 
Svenning. 2017. “Temporal Changes in Bird Functional Diversity 
Across the United States.” Oecologia 185: 737–748.

Blonder, B. W., P. Gaüzère, L. L. Iversen, et al. 2023. “Predicting and 
Controlling Ecological Communities via Trait and Environment 
Mediated Parameterizations of Dynamical Models.” Oikos 2023: e09415.

Blowes, S. A., J. M. Chase, A. Di Franco, et al. 2020. “Mediterranean 
Marine Protected Areas Have Higher Biodiversity via Increased 
Evenness, Not Abundance.” Journal of Applied Ecology 57: 578–589.

Blowes, S. A., G. N. Daskalova, M. Dornelas, et  al. 2022. “Local 
Biodiversity Change Reflects Interactions Among Changing 
Abundance, Evenness, and Richness.” Ecology 103: e3820.

Blowes, S. A., B. McGill, V. Brambilla, et al. 2024. “Synthesis Reveals 
Approximately Balanced Biotic Differentiation and Homogenization.” 
Science Advances 10: eadj9395.

Boënnec, M., V. Dakos, and V. Devictor. 2023. “Sources of Confusion in 
Global Biodiversity Trends.” EcoEvoRxiv.

Boënnec, M., V. Dakos, and V. Devictor. 2024. “Sources of Confusion 
in Global Biodiversity Trends.” Oikos (Copenhagen, Denmark) 2024: 
e10732.

Bowler, D. E., A. D. Bjorkman, M. Dornelas, et  al. 2020. “Mapping 
Human Pressures on Biodiversity Across the Planet Uncovers 
Anthropogenic Threat Complexes.” People and Nature 2: 380–394.

Brown, J. H. 1995. Macroecology. University of Chicago Press.

Buhk, C., M. Alt, M. J. Steinbauer, C. Beierkuhnlein, S. D. Warren, and 
A. Jentsch. 2017. “Homogenizing and Diversifying Effects of Intensive 
Agricultural Land-Use on Plant Species Beta Diversity in Central 
Europe — A Call to Adapt Our Conservation Measures.” Science of the 
Total Environment 576: 225–233.

Cadotte, M. W., K. Carscadden, and N. Mirotchnick. 2011. “Beyond 
Species: Functional Diversity and the Maintenance of Ecological 
Processes and Services.” Journal of Applied Ecology 48: 1079–1087.

Cardillo, M., G. M. Mace, K. E. Jones, et  al. 2005. “Multiple Causes 
of High Extinction Risk in Large Mammal Species.” Science 309: 
1239–1241.

Cardinale, B. J., A. Gonzalez, G. R. H. Allington, and M. Loreau. 2018. 
“Is Local Biodiversity Declining or Not? A Summary of the Debate Over 
Analysis of Species Richness Time Trends.” Biological Conservation 
219: 175–183.

Carmona, C. P., R. Tamme, M. Pärtel, et  al. 2021. “Erosion of Global 
Functional Diversity Across the Tree of Life.” Science Advances 7: 
eabf2675.

Chang, C.-W., M. Ushio, and C.-H. Hsieh. 2017. “Empirical Dynamic 
Modeling for Beginners.” Ecological Research 32: 785–796.

Chao, A., S. Thorn, C.-H. Chiu, et  al. 2023. “Rarefaction and 
Extrapolation With Beta Diversity Under a Framework of Hill Numbers: 
The iNEXT.beta3D Standardization.” Ecological Monographs 93: e1588.

Chao, A., C.-H. Chiu, and L. Jost. 2014. “Unifying Species Diversity, 
Phylogenetic Diversity, Functional Diversity, and Related Similarity 
and Differentiation Measures Through Hill Numbers.” Annual Review 
of Ecology, Evolution, and Systematics 45, no. 1: 297–324.

 14668238, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.70086 by U

niversité G
renoble A

lpes, W
iley O

nline L
ibrary on [01/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5061/dryad.cnp5hqcg9


15 of 17

Chapin, F. S., 3rd, E. S. Zavaleta, V. T. Eviner, et al. 2000. “Consequences 
of Changing Biodiversity.” Nature 405: 234–242.

Chase, J. M., B. J. McGill, D. J. McGlinn, et al. 2018. “Embracing Scale-
Dependence to Achieve a Deeper Understanding of Biodiversity and Its 
Change Across Communities.” Ecology Letters 21: 1737–1751.

Chase, J. M., B. J. McGill, P. L. Thompson, et al. 2019. “Species Richness 
Change Across Spatial Scales.” Oikos 128: 1079–1091.

Cheung, W. W. L., R. Watson, and D. Pauly. 2013. “Signature of Ocean 
Warming in Global Fisheries Catch.” Nature 497: 365–368.

Chiarucci, A., G. Bacaro, D. Rocchini, C. Ricotta, M. W. Palmer, and 
S. M. Scheiner. 2009. “Spatially Constrained Rarefaction: Incorporating 
the Autocorrelated Structure of Biological Communities Into Sample-
Based Rarefaction.” Community Ecology 10: 209–214.

Chichorro, F., A. Juslén, and P. Cardoso. 2019. “A Review of the Relation 
Between Species Traits and Extinction Risk.” Biological Conservation 
237: 220–229.

Connor, E. F., and E. D. McCoy. 1979. “The Statistics and Biology of the 
Species-Area Relationship.” American Naturalist 113: 791–833.

Cooke, R. S. C., F. Eigenbrod, and A. E. Bates. 2019. “Projected 
Losses of Global Mammal and Bird Ecological Strategies.” Nature 
Communications 10: 2279.

DeMalach, N., H. Saiz, E. Zaady, and F. T. Maestre. 2019. “Plant 
Species-Area Relationships Are Determined by Evenness, Cover and 
Aggregation in Drylands Worldwide.” Global Ecology and Biogeography 
28: 290–299.

Dengler, J. 2009. “Which Function Describes the Species-Area 
Relationship Best? A Review and Empirical Evaluation.” Journal of 
Biogeography 36: 728–744.

Devictor, V., C. van Swaay, T. Brereton, et al. 2012. “Differences in the 
Climatic Debts of Birds and Butterflies at a Continental Scale.” Nature 
Climate Change 2: 121–124.

Díaz, S., J. Settele, E. Brondízio, et al. 2020. “Summary for Policymakers 
of the Global Assessment Report on Biodiversity and Ecosystem Services 
of the Intergovernmental Science-Policy Platform on Biodiversity and 
Ecosystem Services, IPBES.”

Donald, P. F., R. E. Green, and M. F. Heath. 2001. “Agricultural 
Intensification and the Collapse of Europe's Farmland Bird Populations.” 
Proceedings. Biological Sciences 268: 25–29.

Donald, P. F., F. J. Sanderson, I. J. Burfield, and F. P. J. van Bommel. 
2006. “Further Evidence of Continent-Wide Impacts of Agricultural 
Intensification on European Farmland Birds, 1990–2000.” Agriculture, 
Ecosystems & Environment 116: 189–196.

Dornelas, M., A. E. Magurran, S. T. Buckland, et al. 2013. “Quantifying 
Temporal Change in Biodiversity: Challenges and Opportunities.” 
Proceedings. Biological Sciences 280: 20121931.

Engen, S., R. Lande, T. Walla, and P. J. DeVries. 2002. “Analyzing 
Spatial Structure of Communities Using the Two-Dimensional Poisson 
Lognormal Species Abundance Model.” American Naturalist 160: 
60–73.

Estes, L., P. R. Elsen, T. Treuer, et al. 2018. “The Spatial and Temporal 
Domains of Modern Ecology.” Nature Ecology & Evolution 2: 819–826.

European Environment Agency. 2010. “Corine Land Cover 2006 Raster 
Data.” http://​www.​eea.​europa.​eu/​data-​and-​maps/​data/​corin​e-​land-​
cover​-​2006-​raster.

Fahrig, L. 2003. “Effects of Habitat Fragmentation on Biodiversity.” 
Annual Review of Ecology, Evolution, and Systematics 34: 487–515.

Fan, Y., J. Chen, G. Shirkey, et  al. 2016. “Applications of Structural 
Equation Modeling (SEM) in Ecological Studies: An Updated Review.” 
Ecological Processes 5: 19.

Franzman, J., M. Brush, K. Umemura, C. Ray, B. Blonder, and J. Harte. 
2021. “Shifting Macroecological Patterns and Static Theory Failure in a 
Stressed Alpine Plant Community.” Ecosphere 12: e03548.

Gaston, K. J., and T. M. Blackburn, eds. 2000. Pattern and Process in 
Macroecology. Blackwell Science.

Gaüzère, P., L. Barbaro, F. Calatayud, et al. 2020. “Long-Term Effects of 
Combined Land-Use and Climate Changes on Local Bird Communities 
in Mosaic Agricultural Landscapes.” Agriculture, Ecosystems & 
Environment 289: 106722.

Gaüzère, P., B. Blonder, P. Denelle, et al. 2023. “The Functional Trait 
Distinctiveness of Plant Species Is Scale Dependent.” Ecography 2023: 
e06504.

Gaüzère, P., L. L. Iversen, A. W. R. Seddon, C. Violle, and B. Blonder. 
2020. “Equilibrium in Plant Functional Trait Responses to Warming 
Is Stronger Under Higher Climate Variability During the Holocene.” 
Global Ecology and Biogeography 29: 2052–2066.

Glymour, C., K. Zhang, and P. Spirtes. 2019. “Review of Causal Discovery 
Methods Based on Graphical Models.” Frontiers in Genetics 10: 524.

Gonzalez, A., J. M. Chase, and M. I. O'Connor. 2023. “A Framework 
for the Detection and Attribution of Biodiversity Change.” Philosophical 
Transactions of the Royal Society of London. Series B, Biological Sciences 
378: 20220182.

Gotelli, N. J., and R. K. Colwell. 2001. “Quantifying Biodiversity: 
Procedures and Pitfalls in the Measurement and Comparison of Species 
Richness.” Ecology Letters 4, no. 4: 379–391.

Graco-Roza, C., S. Aarnio, N. Abrego, et  al. 2022. “Distance Decay 
2.0 – A Global Synthesis of Taxonomic and Functional Turnover in 
Ecological Communities.” Global Ecology and Biogeography: A Journal 
of Macroecology 31: 1399–1421.

Grilli, J. 2020. “Macroecological Laws Describe Variation and Diversity 
in Microbial Communities.” Nature Communications 11: 4743.

Harte, J., K. Umemura, and M. Brush. 2021. “DynaMETE: A Hybrid 
MaxEnt-Plus-Mechanism Theory of Dynamic Macroecology.” Ecology 
Letters 24: 935–949.

Hillebrand, H., D. M. Bennett, and M. W. Cadotte. 2008. “Consequences 
of Dominance: A Review of Evenness Effects on Local and Regional 
Ecosystem Processes.” Ecology 89: 1510–1520.

Hulshof, C. M., and M. N. Umaña. 2023. “Power Laws and Plant Trait 
Variation in Spatio-Temporally Heterogeneous Environments.” Global 
Ecology and Biogeography 32: 310–323.

Kail, J., K. Brabec, M. Poppe, and K. Januschke. 2015. “The Effect of River 
Restoration on Fish, Macroinvertebrates and Aquatic Macrophytes: A 
Meta-Analysis.” Ecological Indicators 58: 311–321.

Kampichler, C., C. a. M. van Turnhout, V. Devictor, and H. P. van 
der Jeugd. 2012. “Large-Scale Changes in Community Composition: 
Determining Land Use and Climate Change Signals.” PLoS One 7: e35272.

Karger, D. N., O. Conrad, J. Böhner, et al. 2017. “Climatologies at High 
Resolution for the Earth's Land Surface Areas.” Scientific Data 4: 1–20.

Keck, F., T. Peller, R. Alther, et al. 2025. “The Global Human Impact on 
Biodiversity.” Nature 641: 395–400.

Keil, P., and J. Chase. 2022. “Interpolation of Temporal Biodiversity 
Change, Loss, and Gain Across Scales: A Machine Learning Approach.” 
EcoEvoRxiv.

Keil, P., A. T. Clark, V. Barták, and F. Leroy. 2025. “Should Regional 
Species Loss Be Faster or Slower Than Local Loss? It Depends on 
Density-Dependent Rate of Death.” Ecology and Evolution 15: e71162.

Keil, P., T. Wiegand, A. B. Tóth, D. J. McGlinn, and J. M. Chase. 2021. 
“Measurement and Analysis of Interspecific Spatial Associations as a 
Facet of Biodiversity.” Ecological Monographs 91: e01452.

 14668238, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.70086 by U

niversité G
renoble A

lpes, W
iley O

nline L
ibrary on [01/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster


16 of 17 Global Ecology and Biogeography, 2025

Koffel, T., K. Umemura, E. Litchman, and C. A. Klausmeier. 2022. “A 
General Framework for Species-Abundance Distributions: Linking 
Traits and Dispersal to Explain Commonness and Rarity.” Ecology 
Letters 25: 2359–2371.

Lamanna, C., B. Blonder, C. Violle, et al. 2014. “Functional Trait Space 
and the Latitudinal Diversity Gradient.” Proceedings of the National 
Academy of Sciences of the United States of America 111: 13745–13750.

Laubach, Z. M., E. J. Murray, K. L. Hoke, R. J. Safran, and W. Perng. 
2021. “A Biologist's Guide to Model Selection and Causal Inference.” 
Proceedings of the Royal Society B: Biological Sciences 288: 20202815.

Lavorel, S., and E. Garnier. 2002. “Predicting Changes in Community 
Composition and Ecosystem Functioning From Plant Traits: Revisiting 
the Holy Grail.” Functional Ecology 16: 545–556.

Lefcheck, J. S. 2016. “piecewiseSEM: Piecewise Structural Equation 
Modelling in R for Ecology, Evolution, and Systematics.” Methods in 
Ecology and Evolution 7: 573–579.

Leroy, F., J. Reif, D. Storch, and P. Keil. 2023. “How Has Bird Biodiversity 
Changed Over Time? A Review Across Spatio-Temporal Scales.” Basic 
and Applied Ecology 69: 26–38.

Leung, B., A. L. Hargreaves, D. A. Greenberg, B. McGill, M. Dornelas, 
and R. Freeman. 2022. “Reply to: Emphasizing Declining Populations 
in the Living Planet Report.” Nature 601: E25–E26.

Loh, J., R. E. Green, T. Ricketts, et al. 2005. “The Living Planet Index: 
Using Species Population Time Series to Track Trends in Biodiversity.” 
Philosophical Transactions of the Royal Society of London. Series B, 
Biological Sciences 360: 289–295.

Magurran, A. E., M. Dornelas, F. Moyes, N. J. Gotelli, and B. McGill. 
2015. “Rapid Biotic Homogenization of Marine Fish Assemblages.” 
Nature Communications 6: 8405.

Magurran, A. E., and M. Dornelas. 2010. “Biological Diversity in a 
Changing World.” Philosophical Transactions of the Royal Society of 
London. Series B, Biological Sciences 365, no. 1558: 3593–3597.

Matthews, T. J., J. P. Wayman, R. J. Whittaker, et al. 2023. “A Global 
Analysis of Avian Island Diversity-Area Relationships in the 
Anthropocene.” Ecology Letters 26: 965–982.

May, F., K. Gerstner, D. J. McGlinn, X. Xiao, and J. M. Chase. 2018. “mob-
sim: An r Package for the Simulation and Measurement of Biodiversity 
Across Spatial Scales.” Methods in Ecology and Evolution 9: 1401–1408.

Mazel, F., F. Guilhaumon, N. Mouquet, et  al. 2014. “Multifaceted 
Diversity-Area Relationships Reveal Global Hotspots of Mammalian 
Species, Trait and Lineage Diversity.” Global Ecology and Biogeography 
23: 836–847.

McGill, B., and C. D. Collins. 2003. “A Unified Theory for Macroecology 
Based on Spatial Patterns of Abundance.” Evolutionary Ecology 
Research 5: 469–492.

McGill, B. J., M. Dornelas, N. J. Gotelli, and A. E. Magurran. 2015. 
“Fifteen Forms of Biodiversity Trend in the Anthropocene.” Trends in 
Ecology & Evolution 30: 104–113.

McGlinn, D. J., T. Engel, S. A. Blowes, et  al. 2021. “A Multiscale 
Framework for Disentangling the Roles of Evenness, Density, and 
Aggregation on Diversity Gradients.” Ecology 102: e03233.

McGlinn, D. J., X. Xiao, F. May, et al. 2019. “Measurement of Biodiversity 
(MoB): A Method to Separate the Scale-Dependent Effects of Species 
Abundance Distribution, Density, and Aggregation on Diversity 
Change.” Methods in Ecology and Evolution 10: 258–269.

Mcglinn, D. J., X. Xiao, B. J. Mcgill, et al. 2021. “mobr: Measurement of 
Biodiversity.” R Package Version, 2.

McLean, M., D. Mouillot, M. Lindegren, et al. 2019. “Fish Communities 
Diverge in Species but Converge in Traits Over Three Decades of 
Warming.” Global Change Biology 25: 3972–3984.

Meli, P., K. D. Holl, J. M. Rey Benayas, et al. 2017. “A Global Review of 
Past Land Use, Climate, and Active vs. Passive Restoration Effects on 
Forest Recovery.” PLoS One 12: e0171368.

Mouillot, D., N. A. J. Graham, S. Villéger, N. W. H. Mason, and D. 
R. Bellwood. 2013. “A Functional Approach Reveals Community 
Responses to Disturbances.” Trends in Ecology & Evolution 28: 167–177.

Mouillot, D., N. Loiseau, M. Grenié, et al. 2021. “The Dimensionality 
and Structure of Species Trait Spaces.” Ecology Letters 24: 1988–2009.

Münkemüller, T., L. Gallien, L. J. Pollock, et al. 2020. “Dos and Don'ts 
When Inferring Assembly Rules From Diversity Patterns.” Global 
Ecology and Biogeography 164: S165.

Myers, R. A., and B. Worm. 2003. “Rapid Worldwide Depletion of 
Predatory Fish Communities.” Nature 423: 280–283.

Nekola, J. C., and P. S. White. 1999. “The Distance Decay of Similarity in 
Biogeography and Ecology.” Journal of Biogeography 26: 867–878.

Newman, E. A., M. Q. Wilber, K. E. Kopper, et al. 2020. “Disturbance 
Macroecology: A Comparative Study of Community Structure Metrics 
in a High-Severity Disturbance Regime.” Ecosphere 11: e03022.

Parmesan, C., M. T. Burrows, C. M. Duarte, et al. 2013. “Beyond Climate 
Change Attribution in Conservation and Ecological Research.” Ecology 
Letters 16, no. Suppl 1: 58–71.

Petraitis, P. S., R. E. Latham, and R. A. Niesenbaum. 1989. “The 
Maintenance of Species Diversity by Disturbance.” Quarterly Review of 
Biology 64: 393–418.

Pigot, A. L., L. E. Dee, A. J. Richardson, et al. 2025. “Macroecological 
Rules Predict How Biomass Scales With Species Richness in Nature.” 
Science (New York, N.Y.) 387: 1272–1276.

Powell, K. I., J. M. Chase, and T. M. Knight. 2013. “Invasive Plants 
Have Scale-Dependent Effects on Diversity by Altering Species-Area 
Relationships.” Science 339: 316–318.

Primack, R. B., A. J. Miller-Rushing, R. T. Corlett, et  al. 2018. 
“Biodiversity Gains? The Debate on Changes in Local- vs Global-Scale 
Species Richness.” Biological Conservation 219: A1–A3.

Purvis, A., J. L. Gittleman, G. Cowlishaw, and G. M. Mace. 2000. 
“Predicting Extinction Risk in Declining Species.” Proceedings of the 
Royal Society of London, Series B: Biological Sciences 267: 1947–1952.

Reif, J., A. Gamero, A. Hološková, et al. 2024. “Accelerated Farmland 
Bird Population Declines in European Countries After Their Recent EU 
Accession.” Science of the Total Environment 946: 174281.

Ricotta, C., A. T. R. Acosta, G. Bacaro, et al. 2019. “Rarefaction of Beta 
Diversity.” Ecological Indicators 107: 105606.

Ricotta, C., S. Pavoine, G. Bacaro, and A. T. R. Acosta. 2012. “Functional 
Rarefaction for Species Abundance Data.” Methods in Ecology and 
Evolution 3: 519–525.

Rigal, S., V. Dakos, H. Alonso, et al. 2023. “Farmland Practices Are Driving 
Bird Population Decline Across Europe.” Proceedings of the National 
Academy of Sciences of the United States of America 120: e2216573120.

Runge, J. 2023. “Modern Causal Inference Approaches to Investigate 
Biodiversity-Ecosystem Functioning Relationships.” Nature 
Communications 14: 1917.

Runge, J., A. Gerhardus, G. Varando, V. Eyring, and G. Camps-Valls. 
2023. “Causal Inference for Time Series.” Nature Reviews Earth and 
Environment 4: 487–505.

Simberloff, D., J.-L. Martin, P. Genovesi, et  al. 2013. “Impacts of 
Biological Invasions: What's What and the Way Forward.” Trends in 
Ecology & Evolution 28: 58–66.

Smith, A. B., B. Sandel, N. J. B. Kraft, and S. Carey. 2013. “Characterizing 
Scale-Dependent Community Assembly Using the Functional-
Diversity–Area Relationship.” Ecology 94: 2392–2402.

 14668238, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.70086 by U

niversité G
renoble A

lpes, W
iley O

nline L
ibrary on [01/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



17 of 17

Socolar, J. B., J. J. Gilroy, W. E. Kunin, and D. P. Edwards. 2016. “How 
Should Beta-Diversity Inform Biodiversity Conservation?” Trends in 
Ecology & Evolution 31: 67–80.

Srivastava, D. S., M. W. Cadotte, A. A. M. MacDonald, R. G. Marushia, 
and N. Mirotchnick. 2012. “Phylogenetic Diversity and the Functioning 
of Ecosystems.” Ecology Letters 15: 637–648.

Staab, M., M. M. Gossner, N. K. Simons, et  al. 2023. “Insect Decline 
in Forests Depends on Species' Traits and May Be Mitigated by 
Management.” Communications Biology 6: 338.

Storch, D., E. Bohdalková, and J. Okie. 2018. “The More-Individuals 
Hypothesis Revisited: The Role of Community Abundance in Species 
Richness Regulation and the Productivity-Diversity Relationship.” 
Ecology Letters 21: 920–937.

Storch, D., A. L. Sizling, J. Reif, J. Polechová, E. Sizlingová, and K. 
J. Gaston. 2008. “The Quest for a Null Model for Macroecological 
Patterns: Geometry of Species Distributions at Multiple Spatial Scales.” 
Ecology Letters 11: 771–784.

Terry, J. C. D., and A. G. Rossberg. 2023. “Slower, but Deeper Community 
Change: Anthropogenic Impacts on Species Temporal Turnover Are 
Regulated by Intrinsic Dynamics.” bioRxiv. 2022.11.10.515930.

Thomas, C. D., P. K. Gillingham, R. B. Bradbury, et al. 2012. “Protected 
Areas Facilitate Species' Range Expansions.” Proceedings of the National 
Academy of Sciences of the United States of America 109: 14063–14068.

Thouverai, E., S. Pavoine, E. Tordoni, and D. Rocchini. 2020. “Rarefy: 
Rarefaction Method.” arts.units.it.

Tucker, M. A., K. Böhning-Gaese, W. F. Fagan, et  al. 2018. “Moving 
in the Anthropocene: Global Reductions in Terrestrial Mammalian 
Movements.” Science 359: 466–469.

Tucker, M. A., L. Santini, C. Carbone, and T. Mueller. 2021. “Mammal 
Population Densities at a Global Scale Are Higher in Human-Modified 
Areas.” Ecography 44: 1–13.

van Klink, R., D. E. Bowler, K. B. Gongalsky, M. Shen, S. R. Swengel, and 
J. M. Chase. 2024. “Disproportionate Declines of Formerly Abundant 
Species Underlie Insect Loss.” Nature 628: 359–364.

Vellend, M., L. Baeten, I. H. Myers-Smith, et  al. 2013. “Global Meta-
Analysis Reveals no Net Change in Local-Scale Plant Biodiversity Over 
Time.” Proceedings of the National Academy of Sciences of the United 
States of America 110: 19456–19459.

Villéger, S., J. Ramos Miranda, D. Flores Hernández, and D. Mouillot. 
2010. “Contrasting Changes in Taxonomic vs. Functional Diversity of 
Tropical Fish Communities After Habitat Degradation.” Ecological 
Applications: A Publication of the Ecological Society of America 20: 
1512–1522.

Violle, C., P. B. Reich, S. W. Pacala, B. J. Enquist, and J. Kattge. 2014. 
“The Emergence and Promise of Functional Biogeography.” Proceedings 
of the National Academy of Sciences of the United States of America 111: 
13690–13696.

Weiher, E., D. Freund, T. Bunton, A. Stefanski, T. Lee, and S. Bentivenga. 
2011. “Advances, Challenges and a Developing Synthesis of Ecological 
Community Assembly Theory.” Philosophical Transactions of the Royal 
Society of London. Series B, Biological Sciences 366: 2403–2413.

White, E. P., S. K. M. Ernest, P. B. Adler, A. H. Hurlbert, and S. K. Lyons. 
2010. “Integrating Spatial and Temporal Approaches to Understanding 
Species Richness.” Philosophical Transactions of the Royal Society of 
London. Series B, Biological Sciences 365: 3633–3643.

Ye, H., R. J. Beamish, S. M. Glaser, et  al. 2015. “Equation-Free 
Mechanistic Ecosystem Forecasting Using Empirical Dynamic 
Modeling.” Proceedings of the National Academy of Sciences of the United 
States of America 112: E1569-76.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section.  

 14668238, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.70086 by U

niversité G
renoble A

lpes, W
iley O

nline L
ibrary on [01/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Bridging Macroecology and Temporal Dynamics to Better Attribute Global Change Impacts on Biodiversity
	ABSTRACT
	1   |   Introduction
	2   |   Dynamic Macroecological Patterns Integrate Diversity Changes Across Time and Space
	3   |   Three Low-Level Biodiversity Components Underpin Dynamics of Macroecological Patterns
	4   |   Integrating Trait-Based Perspectives Into Temporal Dynamics of Macroecological Patterns Helps Move Toward Attribution of Diversity Changes to Human Drivers
	5   |   Attributing Detected Diversity Changes to Anthropogenic Drivers Using (Trait-Based) Dynamic Macroecological Patterns
	6   |   Case Study
	6.1   |   Methods
	6.2   |   Results
	6.3   |   Spatial Scaling of Diversity Dynamics
	6.4   |   Lower-Level Biodiversity Components
	6.5   |   Human Driver Attribution
	6.6   |   Discussion

	7   |   Concluding Remarks
	Acknowledgements
	Conflicts of Interest
	Data Availability Statement
	References


